Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T18:39:38.264Z Has data issue: false hasContentIssue false

Structural and morphological variations of encapsulated metal oxides in single walled carbon nanotubes

Published online by Cambridge University Press:  26 February 2011

Pedro MFJ Costa
Affiliation:
[email protected], University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge, N/A, CB2 3QZ, United Kingdom
Narun Thamavaranukup
Affiliation:
[email protected], University of Oxford, United Kingdom
Thomas Rutherford
Affiliation:
[email protected], University of Oxford, United Kingdom
Steffi Friedrichs
Affiliation:
[email protected], University of Oxford
Jeremy Sloan
Affiliation:
[email protected], University of Oxford
Malcolm Green
Affiliation:
[email protected], University of Oxford
Get access

Abstract

Single walled carbon nanotubes have been filled with a variety of metal oxides and the structural and morphological characteristics of the metal_oxide@SWNT composites studied. Advanced techniques of software aberrations correction for transmission electron microscopy were used for characterisation. This research shows that, despite their higher reactivity compared to salts such as halides, oxides can be encapsulated within SWNTs with some compounds attaining remarkable filling yields.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ajayan, P. and Iijima, S., Nature 361, 333 (1993).Google Scholar
[2] Cook, J., Sloan, J., Heesom, R., Hammer, J. and Green, M. L. H., Chemical Communications, 2673 (1996).Google Scholar
[3] Hornbaker, D. J., Kahng, S.-J., Misra, S., Smith, B. W., Johnson, A. T., Mele, E. J., Luzzi, D. E. and Yazdani, A., Science 295, 828 (2002).Google Scholar
[4] Mittal, J., Monthioux, M., Allouche, H. and Stephan, O., Chemical Physics Letters 339, 311 (2001).Google Scholar
[5] Friedrichs, S., Meyer, R. R., Sloan, J., Kirkland, A. I., Hutchison, J. L. and Green, M. L. H., Chemical Communications, 929 (2001).Google Scholar
[6] Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Chapelle, M. L., Lefrant, S., Deniard, P., Lee, R. and Fischer, J. E., Nature 388, 756 (1997).Google Scholar
[7] Brown, G., Bailey, S. R., Novotny, M., Carter, R., Flahaut, E., Coleman, K., Hutchison, J. L., Green, M. L. H. and Sloan, J., Applied Physics A - Materials Science and Processing 76, 457 (2003).Google Scholar
[8] Meyer, R. R., Kirkland, A. I. and Saxton, W. O., Ultramicroscopy 92, 89 (2002).Google Scholar
[9] Smith, B. W., Monthioux, M. and Luzzi, D. E., Nature 396, 323 (1998).Google Scholar
[10] Morgan, D. A., Sloan, J. and Green, M. L. H., Chemical Communications, 2442 (2002).Google Scholar
[11] Earnshaw, A. and Greenwood, N. N., Chemistry of the Elements, 2nd (Butterworth-Heinemann, Oxford, 1997).Google Scholar
[12] Costa, P. M. F. J., Sloan, J., Rutherford, T. and Green, M. L. H., Chemistry of Materials, accepted (2005).Google Scholar
[13] Krebs, B., Muller, A. and Beyer, H. H., Inorganic Chemistry 8, 436 (1969).Google Scholar
[14] Ajayan, P., Chemical Reviews 99, 1787 (1999).Google Scholar
[15] Sloan, J., Friedrichs, S., Meyer, R., Kirkland, A., Hutchinson, J. and Green, M., Inorganic Chimica Acta 330, 1 (2002).Google Scholar
[16] Adams, D. M., Christy, A. G., Haines, J. and Clark, S. M., Physical Review B 46, 11358 (1992).Google Scholar
[17] Philp, E., Sloan, J., Kirkland, A. I., Meyer, R. R., Friedrichs, S., Hutchison, J. L. and Green, M. L. H., Nature Materials 2, 788 (2003).Google Scholar
[18] Hulman, M., Kuzmany, H., Costa, P. M. F. J., Friedrichs, S. and Green, M. L. H., Applied Physics Letters 85, 2068 (2004).Google Scholar