Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T18:08:04.709Z Has data issue: false hasContentIssue false

Structural and Microwave Characterization of Magnetron Sputtered Ba0.5Sr0.5TiO3 Films on c-plane Sapphire Substrates

Published online by Cambridge University Press:  01 February 2011

Ernest Anthony Fardin
Affiliation:
[email protected], RMIT University, School of Electrical and Computer Engineering, GPO Box 2476V, Melbourne, Victoria, 3001, Australia, +61 3 9925 3250, +61 3 9925 2007
A. S. Holland
Affiliation:
[email protected], RMIT University, School of Electrical and Computer Engineering, GPO Box 2476V, Melbourne, Victoria, 3001, Australia
K. Ghorbani
Affiliation:
[email protected], RMIT University, School of Electrical and Computer Engineering, GPO Box 2476V, Melbourne, Victoria, 3001, Australia
B. F. Usher
Affiliation:
[email protected], La Trobe University, Department of Electronic Engineering, Bundoora, Victoria, 3086, Australia
Get access

Abstract

Many studies of Barium Strontium Titanate (BST) thin films for RF / microwave applications have employed MgO, LaAlO3 or Pt/Si as the substrate material for BST deposition. However, there have been relatively few reports of BST films grown on sapphire, despite the excellent microwave properties of this material. In this investigation, BST thin films were deposited by RF magnetron sputtering on (001) single crystal c-plane sapphire substrates. Interdigitated capacitors (IDCs) patterned on the film surface were used to measure the dielectric tunability and loss tangent at microwave frequencies. Thick Au conductors were electroplated to minimize conductor losses. Post deposition annealing in air was found to significantly improve the tunability of the sputtered films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chang, W., Horwitz, J. S., Carter, A. C., Pond, J. M., Kirchoefer, S. W., Gilmore, C.M., and Chrisey, D. B., Appl. Phys. Lett. 74, 10331035 (1999).Google Scholar
2. Tombak, A., Maria, J.-P., Ayguavives, F. T., Jin, A., Stauf, G. T., Kingon, A. I., and Mortazawi, A., IEEE Trans. Microwave Theory Tech. 51, 462467 (2003).Google Scholar
3. Gevorgian, S. S. and Kollberg, E. L., IEEE Trans. Microwave Theory Tech. 49, 21172124 (2001).Google Scholar
4. Stauf, G. T., Ragaglia, C., Roeder, J. F., Vestyck, D., Maria, J.-P., Ayguavives, T., Kingon, A., Mortazawi, A., and Tombak, A., Integr. Ferroelectr. 39, 12701280 (2001).Google Scholar
5. Lee, S.-J., Moon, S. E., Kwak, M.-H., Ryu, H.-C., Kim, Y.-T., and Kang, K.-Y., Jap. J. Appl. Phys. 43, 67506754 (2004).Google Scholar
6. Bhakdisongkhram, G., Yamashita, Y., Nishida, T., and Shiosaki, T., Jap. J. Appl. Phys. 44, 70987102 (2005).Google Scholar
7. Bellotti, J., Ph.D. Thesis, Rutgers University (2003).Google Scholar
8. Acikel, B., Ph.D. Thesis, University of California (2002).Google Scholar
9. Rafaja, D., Kub, J., Simek, D., Lindner, J., and Petzelt, J., Thin Solid Films 422, 813 (2002).Google Scholar
10. Lee, W. E. and Lagerlof, K. P. D., J. Elec. Mic. Tech. 2, 2457–258 (1985).Google Scholar
11. Weiss, F., Lindner, J., et al., Surf. Coat. Technol. 133, 191197 (2000).Google Scholar
12. Farrow, R. F. C., Harp, G. R., Marks, R. F., Rabedeau, T. A., Toney, M. F., Weller, D., and Parkin, S. S. S., J. Crystal Growth 133, 4758 (1993).Google Scholar
13. Xia, Y., Wu, D., and Liu, Z., J. Phys. D: Appl. Phys. 37, 22562260 (2004).Google Scholar
14. Baumert, B. A., Chang, L.-H., et al., J. Appl. Phys. 82, 25582566 (1997).Google Scholar