Published online by Cambridge University Press: 15 February 2011
The present paper is aimed at studying the physics of a nickel nanophase at the atomic level. A dense polycrystal has been designed by ideally growing many nano-crystals from randomly distributed seeds and truncating them through a Voronoi construction. The sample has been brought to thermodynamic equilibrium and quenched to its local minimum energy thus leading to a mechanically stable system. The dynamic evolution has been simulated by means of classical molecular dynamics employing a Finnis-Sinclair interactive potential. Owing to the large number of atoms required, a parallel code has been developed. Elastic and plastic behaviour of the simulated sample has been compared with that of a perfect crystal. Evidence of an enhanced plastic behaviour has been observed when severe tensile stresses are applied.