Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T13:42:53.019Z Has data issue: false hasContentIssue false

Structural and Magneto-transport Properties of Cr-doped In2O3 Diluted Magnetic Semiconductors

Published online by Cambridge University Press:  01 February 2011

N.B. Ukah
Affiliation:
[email protected], Missouri State University, Physics, Springfield, Missouri, United States
R K Gupta
Affiliation:
[email protected], Missouri State University, Physics, Springfield, Missouri, United States
K Ghosh
Affiliation:
[email protected], Missouri State University, Physics, Springfield, Missouri, United States
P K Kahol
Affiliation:
[email protected], Missouri State University, Physics, Springfield, Missouri, United States
R Giedd
Affiliation:
[email protected], Missouri State University, Physics, Springfield, Missouri, United States
Get access

Abstract

We report the experimental study of the structural and magnetotransport properties of chromium-doped indium oxide (In2O3:Cr) thin films using x-ray diffractometer, and by measuring the resistivity and Hall effect as a function of temperature in various magnetic fields. The In2O3:Cr diluted magnetic semiconductor thin films were grown under different partial oxygen pressures (Po2) on sapphire substrates using pulsed laser deposition (PLD) technique. Observed expansions in lattice parameter and crystal size in these films with increase in oxygen growth pressure are traceable to the reduction in oxygen vacancies. A redshift of the absorption edges of the samples with increase in oxygen growth pressure is attributed to the significant improvement in crystallinity. The exchange interaction between the electron spins in the conduction band and the spins of the Cr 3d electrons was evident in the anomalous Hall effect (AHE), which persisted up to 300 K. An analysis of the dc electrical transport in the films was carried out using hopping conduction and ionized impurity scattering models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kumar, D., Antifakos, J., Blamire, M.G., Barber, Z.H., Appl. Phys. Lett. 84, 5004 (2004).Google Scholar
2. Zhang, J., Li, X.Z., Xu, B., Sellmyer, D.J., Appl. Phys. Lett. 86, 212504 (2005).Google Scholar
3. Peleckis, G., Wang, X., Dou, S.X., Appl. Phys. Lett. 89, 022501 (2006).Google Scholar
4. Zhang, J., Li, X.Z., Xu, B., Sellmyer, D.J., Appl. Phys. Lett. 86, 212504 (2005).Google Scholar
5. Ham, Moon-Ho, Jeong, Min-Chang, Lee, Woo-Young, Myoung, Jae-Min, Chang, Joon-Yeon, Han, Suk-Hee, Jpn J. Appl. Phys. 42, L1372 (2003).Google Scholar
6. Ghosh, K., Arif, M., Kehl, T., Patel, R.J., Mishra, S.R., Broerman, J.G., Mater. Res. Soc. Symp. Proc. 831, E3.21.1 (2005).Google Scholar
7. Philip, J., Punnoose, A., Kim, B.I., Reddy, K.M., Layne, S., Holmes, J.O., Satpati, B., Leclair, P.R., Santos, T.S, Moodera, J.S., Nat.Mater. 5, 298 (2006).Google Scholar
8. Kharel, P., Sudaker, C., Sahana, M.B., Lawes, G., Suryanarayanan, R., Naik, R., J. Appl. Phys. 101, 09H117 (2007).Google Scholar
9. Tan, S.T., Chen, B.J., Sun, X.W., Fan, W.J., Kwok, H.S., Zhang, X.H., Chua, S.J., J. Appl. Phys. 98, 013505 (2005).Google Scholar
10. Zhou, X.D., Hueber, W., Appl. Phys. Lett. 79, 3512 (2001).Google Scholar
11. Pan, Han-Chang, Shiao, Ming-Hua, Su, Chien-Ying, Hsiao, Chien-Nan, J. Vac. Sci. Technol. A 23, 1187 (2005).Google Scholar
12. Tan, S.T., Chen, B.J., Sun, X.W., Fan, W.J., Kwok, H.S, Zhang, X.H., Chua, S.J., J. Appl. Phys. 98, 013505 (2005).Google Scholar
13. Lebedeva, N., Novikov, S., Saloniemi, T., Kuivalainen, P., Phys. Scrip. 85, T114 (2004).Google Scholar
14. Ederth, J., Johnsson, P., Niklasson, G.A., Hoel, A., Hultaker, A., Heszler, P., Granqvist, C.G., van Doorn, A.R., Jongerius, M.J., Phys. Rev. B 68, 155410 (2003).Google Scholar