Article contents
Structural and magnetic properties of pure and cobalt doped Gallium Nitride nanocrystals
Published online by Cambridge University Press: 01 February 2011
Abstract
In the present study pure and doped gallium nitride (GaN) nanocrystals were synthesized using gallium trichloride (GaCl3), ethylene diamine tetra acetic acid (EDTA) and cobalt chloride as raw materials at a temperature of 900 °C in ammonia (NH3) atmosphere. The XRD spectrum for pure and cobalt doped GaN nanocrystals shows the formation of single phase wurtzite structure. No impurity phases were observed in the X-ray diffraction pattern for 5% Co doped sample whereas secondary phases were observed when the doping concentration exceeds 5 %. Shift in X-ray diffraction peaks were observed in Co doped samples towards lower angle side compared to pure GaN, it confirms that the Co atoms introduces in to the GaN lattice. Transmission electron microscopy images were taken for pure and Co doped GaN. Hexagonal morphology was observed in pure GaN samples. The average size of the particle was found to be ˜20 nm for pure and Co doped GaN. The magnetic measurements were carried out for the Co (5% & 10%) doped samples both at 10K and 300K. Clear hysteresis loop in the magnetization curve suggest the presence of ferromagnetic behavior in cobalt doped GaN. Temperature dependent magnetization (M-T) measurements were also carried out for doped samples using Super Conducting Quantum Interface Device (SQUID) from 10K to 300K The results have been discussed and correlated to structural and magnetic properties of the materials.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 1
- Cited by