Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:22:42.435Z Has data issue: false hasContentIssue false

Structural and Electronic Transitions in AgReO4 Under Pressure

Published online by Cambridge University Press:  28 February 2011

Jens W. Otto
Affiliation:
Cornell University, Materials Science Center, Ithaca, NY 14853.
Richard F. Porter
Affiliation:
Cornell University, Materials Science Center, Ithaca, NY 14853.
Arthur L. Ruoff
Affiliation:
Cornell University, Materials Science Center, Ithaca, NY 14853.
Get access

Abstract

The behavior of AgReO4 under pressure has been studied in a diamond anvil cell. The equation of state determined by synchrotron radiation shows considerable change in compressibility with increasing pressure. X-ray and Raman scattering show a first-order phase transition from the scheelite to an as yet undetermined structure at 13 GPa. Changes in both the internal and external Raman active modes suggest a change in Re coordination. Optical transmission experiments demonstrate that the energy gap in the scheelitephase decreases at the rate of 75 meV/GPa. There is a small jump in the energy gap at 13 GPa, probably related to the structural transition. AgReO4 remains aninsulator to at least 47 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jayaraman, A., Batlogg, B., and VanUitert, L. G., Phys. Rev. B 28 4774 (1983).CrossRefGoogle Scholar
2. Jayaraman, A., Batlogg, B., and VanUitert, L. G., Phys. Rev. B 3, 5423 (1985).CrossRefGoogle Scholar
3. Ulbricht, K. and Kriegsmann, H., Z. Anorg. Allg. Chem. 358 193 (1968).CrossRefGoogle Scholar
4. Jayaraman, A., Kourouklis, G. A., and VanUitert, L. G., Phys. Rev. B 36, 8547 (1987).CrossRefGoogle Scholar
5. McMillan, J. A., J. Inorg.Nucl. Chem. 13, 28 (1960).CrossRefGoogle Scholar
6. Baublitz, M., Arnold, V., and Ruoff, A. L., Rev. Sci. Instrum. 52, 11 (1981).CrossRefGoogle Scholar
7. Wolf, A., J. Less-Common Metals 61, 151 (1978).CrossRefGoogle Scholar
8. Bell, P. M., Xu, J., and Mao, H. K., in Shock Waves in Condensed Matter, edited by Gupta, Y. M. (Plenum Press, New York, 1985), p.125.Google Scholar
9. Brister, K. E., Vohra, Y. K., and Ruoff, A. L., Rev. Sci. Instrum. 57 2560 (1986).CrossRefGoogle Scholar
10. Syassen, K. and Sonnenschein, R., Rev. Sci. Instrum. 53, 644 (1982).CrossRefGoogle Scholar
11. Burkert, P. K. and Hutter, F. M., Z. Naturforsch. B 31, 145 (1976).CrossRefGoogle Scholar
12. Kanellakopoulos, B., J. Inorg. Nucl. Chem. 28, 813 (1966).CrossRefGoogle Scholar