Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T20:27:55.012Z Has data issue: false hasContentIssue false

Strong Exciton Polariton Dispersion in Multimode GaN Microcavity

Published online by Cambridge University Press:  31 January 2011

Mei-Chun Liu
Affiliation:
[email protected], Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, United States
Yuh-Jen Cheng
Affiliation:
[email protected], Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, United States
Shih-Hsin Hsu
Affiliation:
[email protected], United States
Hao-Chung Kuo
Affiliation:
[email protected], Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, United States
Tien-Chang Lu
Affiliation:
[email protected], Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, United States
Shing-Chung Wang
Affiliation:
[email protected], United States
Get access

Abstract

We report the experimental observation of a very strong cavity polariton dispersion in a multi-axial mode GaN microcavity. The linewidth of photoluminescent (PL) spectrum covers a few cavity axial modes. The resonant photoluminescent peaks have a strong dispersion. The frequency spacing between adjacent peaks decreases by almost a factor of five from 470nm to 370nm. The strong dispersion can be well described by cavity polariton dispersion, but not by the dispersion of the refractive index of GaN. The measured exciton-photon interaction constant is 260 meV. It is an order of magnitude higher than the typically reported values for GaN microcavities

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Imamoglu, A., Ram, R. J., Pau, S., and Yamamoto, Y., Phys. Rev. A 53, 4250 (1996).Google Scholar
2 Butte, R., Delalleau, G., Tartakovskii, A. I., Skolnick, M. S., Astratov, V. N., Baumberg, J. J., Malpuech, G., Carlo, A. D., Kavokin, A. V., and Roberts, J. S., Phys. Rev. B 65, 205310 (2002).Google Scholar
3 Malpuech, G., Carlo, A. D., Kavokin, A., Baumberg, J. J., Zamfirescu, M., and Lugli, P., Appl. Phys. Lett. 81, 412 (2002).Google Scholar
4 Christopoulos, S., Hogersthal, G. Baldassarri Hoger von, Grundy, A. J. D., Lagoudakis, P. G., Kavokin, A. V., Baumberg, J. J., Christmann, G., Butte, R., Feltin, E., Carlin, J.-F., et al., Phys. Rev. Lett. 98, 126405 (2007).Google Scholar
5 Tawara, T., Gotoh, H., Akasaka, T., Kobayashi, N., and Saitoh, T., Phys. Rev. Lett. 92, 256402 (2004).Google Scholar
6 Christmann, G., Butte, R., Feltin, E., Mouti, A., Stadelmann, P. A., Castiglia, A., Carlin, J.-F., and Grandjean, N., Phys. Rev. B 77, 085310 (2008).Google Scholar
7 Feltin, E., Christmann, G., Butte, R., Carlin, J.-F., Mosca, M., and Grandjean, N., Appl. Phys. Lett. 89, 071107 (2006).Google Scholar
8 Christmann, G., Butt'e, R., Feltin, E., Carlin, J.-F., and Grandjean, N., Appl. Phys. Lett. 93, 051102 (2008).Google Scholar