Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:59:55.382Z Has data issue: false hasContentIssue false

Stress Induced Structural Changes of Interphase Boundaries and Mechanical Twins in two-Phase γ-Titanium Aluminides

Published online by Cambridge University Press:  10 February 2011

F. Appel
Affiliation:
Institute for Materials Research, GKSS Research Centre, Max-Planck-Str., D-21502 Geesthacht, Germany
R. Wagner
Affiliation:
Institute for Materials Research, GKSS Research Centre, Max-Planck-Str., D-21502 Geesthacht, Germany
Get access

Abstract

Conventional and high-resolution electron microscopy has been used to examine the interfacial structures in (α2 + γ) titanium aluminide alloys. Accommodation of misfit which arises because of differences in lattice parameters and crystal structure leads to dense structures of interfacial dislocations and coherency stresses. During deformation stress induced structural changes of misfitting interfaces occur. These are closely related to the generation of perfect and twinning partial dislocations. At elevated temperatures diffusion controlled structural changes take place at an atomic level and seem to limit the structural stability of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y.-W. in Gamma Titanium Aluminides. edited by Kim, Y.-W., Wagner, R. and Yamaguchi, M., (TMS, Warrendale, PA, 1995), p. 637.Google Scholar
2. Appel, F., Beaven, P.A. and Wagner, R., Acta Metall. mater. 41, 1721 (1993).Google Scholar
3. Appel, F., Sparka, U. and Wagner, R. in High-Temperature Ordered Intermetallic Alloys VI edited by Horton, J., Baker, I., Hanada, S., Noebe, R.D., and Schwartz, D.S., (Mater. Res. Soc Symp. Proc. 364, Pittsburgh, PA, 1995), p. 623.Google Scholar
4. Blackburn, M.J. in Technology and Applications of Titanium, edited by Jaffee, R.T. and Promisel, N.E, (Pergamon, London, 1970), p. 633.Google Scholar
5. McCullough, C., Valencia, J.J., Levi, C.G., and Mehrabian, R., Acta Metall. Mater. 37, 1321 (1989).Google Scholar
6. Inui, H., Oh, M.H., Nakamura, A., and Yamaguchi, M., Phil. Mag. A 66, 539 (1992).Google Scholar
7. Mahon, G. and Howe, J.M., Metall. Trans. A 8, 299 (1990).Google Scholar
8. Zhao, L. and Tangri, K., Phil. Mag. A 64, 361 (1991).Google Scholar
9. Kad, B.K. and Hazzledine, P.M., Phil. Mag. Lett. 66, 133 (1992).Google Scholar
10. Appel, F., Christoph, U. and Wagner, R. in Interface Control of Electrical. Chemical ani Mechanical Properties, edited by Murarka, S.P., Rose, C., Ohrni, T., and Seidel, T., (Mater. Res Soc. Symp. Proc. 318, Pittsburgh, PA, 1994), p. 691.Google Scholar
11. Inkson, B.J. and Humphreys, C.J., Phil. Mag. A 73, 1333 (1996).Google Scholar
12. Kroll, S., Mehrer, H., Stolwijk, N., Herzig, Ch., Rosenkranz, R., and Frommeyei, G. Z. Metallkunde 83, 8 (1992).Google Scholar
13. Singh, S.R. and Howe, J.M., Phil. Mag. Letters 65, 233 (1992).Google Scholar
14. Frank, F.C. and Ives, M.B., J. Appl. Phys. 31, 1996 (1960).Google Scholar
15. Mullins, W.W. and Hirth, J.P., J. Phys. Chem. Solids 24, 1391 (1963).Google Scholar
16. Trivedi, R., Metall. Trans. 1, 921 (1970).Google Scholar
17. Olson, G.B., Scripta Metall. 21, 1023 (1987).Google Scholar