Published online by Cambridge University Press: 22 February 2011
It has been observed that the low-level, pre-tunneling currents through thin gate oxides increased after the oxides had been stressed at high voltages. The number of traps inside of the oxide generated by the stress has been shown to increase as the 1/3 power of the fluence that had passed through the oxide during the stress. The increases in the low-level, pre-tunneling currents have been shown to be proportional to the number of stress generated traps in the oxide and not to the fluence during the stress. The voltage dependences of the excess low-level leakage currents were stress and measurement polarity dependent. Attempts have been made to fit the voltage dependences of the excess low-level currents to Fowler-Nordheim tunneling, Frenkel-Poole conduction or Schottky barrier lowering. The increase in the portion of the low-level, pre-tunneling current that was not dependent on stress/measurement polarity sequence was best fit using Schottky emission currents. The model that has been developed to describe the increases in the low-level currents has centered on trap-assisted currents through the oxides.
Supported by the Semiconductor Research Corporation.