Article contents
Stress and Mechanical Constants Characterizations of Phase-change SbTe-alloys: Influence of the Film Thickness and Substrate
Published online by Cambridge University Press: 01 February 2011
Abstract
We have characterized the in-film stress and the mechanical constants of a growth-dominated phase-change SbTe-alloy, a material beneficially used in the line-cell phase change memory architecture. The influence of the thickness of the films (5-120 nm) and of the substrate used for its deposition (Si, SiO2 and SiC) was studied. The characterizations were carried out on both amorphous and crystalline films. The crystallization temperature was determined by the resistance changes as a function of the temperature. The mechanical characteristics of the films were measured by the wafer curvature method. We observed that the mechanical behavior of these films was strongly dependent on their thicknesses and on the substrate material. For the thinnest amorphous films, the in-film stress was highly compressive (with the largest compressive stress for films on SiC), while it tended to be very low (fully relaxed films) for films thicker than 20 nm. The amorphous films furthermore did not reveal any stress relaxation in time-dependent stress measurements. Therefore, it was not possible to quantify the viscosity of the SbTe-alloy. This result maybe related to a lower defect state in the very thin films used, or to a blocking of the defects by enhanced reactivity of these thin SbTe-alloy films with their surroundings, both resulting in the absence of relaxation in the amorphous state. Finally, the coefficients of thermal expansion (CTE) of the amorphous and crystalline SbTe-alloys were similar, 1–3×10−6 K−1. These values were comparable to the CTE's of the substrates, clearly indicating that for thin films the substrates dominate their thermal expansion behavior.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 1
- Cited by