Published online by Cambridge University Press: 21 February 2011
Surface roughening associated with strain relaxation of Si1-xGex films grown epitaxially on (100) Si substrates has been investigated using transmission electron microscopy, atomic force microscopy and x-ray diffraction. Epitaxial films 100 Å in thickness and containing 18% Ge, which are subcritical with respect to the formation of misfit dislocations, show strain relaxation through surface roughening on annealing at 700 °C. Enhanced surface grooves aligned along <100> directions are observed in films annealed at 850 °C. Strain relaxation as measured by x-ray diffraction is significantly greater at the higher temperature. Prolonged anneals at 850 °C also result in islanding. The surface roughening processes have also been studied in subcritical films with 15% Ge at 900 °C. These films also show enhanced grooving aligned along <100> directions. These observations are consistent with an anisotropic elastic analysis which indicates that grooving should occur preferentially along <100> directions. Intermixing effects in these samples have also been investigated through depth profiling using Auger Electron Spectroscopy. In addition to the above subcritical films, other films with 18% and 22% Ge and supercritical thicknesses have also been studied. For these films, surface grooving is observed along <110> directions, which suggests that these grooves are related to the formation of misfit dislocation networks. The role of these surface roughening processes in the nucleation of dislocations has also been explored.