Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:29:12.893Z Has data issue: false hasContentIssue false

Strain Modification of Epitaxial SrRuO3 Films Using Structural Transitions of Ferroelectric BaTiO3 Substrate

Published online by Cambridge University Press:  15 March 2011

M. K. Lee
Affiliation:
Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708
T. K. Nath
Affiliation:
Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708
C. B. Eom
Affiliation:
Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708
M. C. Smoak
Affiliation:
Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708
F. Tsui
Affiliation:
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599
Get access

Abstract

Electrical conduction and magnetic behavior of ferromagnetic SrRuO3 (bulk Tc= 160 K) were tuned systematically using the structural transitions of ferroelectric BaTiO3 as the growth template. Abrupt resistivity changes of SrRuO3 were observed at the structural transition temperatures of the BaTiO3substrate. The observed effect appears to originate from the lattice changes of BaTiO3 (cubic to tetragonal at 393K, tetragonal to orthorhombic at 278K, and orthorhombic to rhombohedral at 183K) induced by an expansion of spontaneous polarization axis. The observed phenomenon will be very useful for the fabrication of novel perovskite oxide devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Locquet, J. P., Perret, J., Fompeyrine, J., Machler, E., Seo, J. W., and Tendeloo, G. Van, Nature (London) 394, 453 (1998).Google Scholar
2. Rao, R. A., Gan, Q., Eom, C. B., Cava, R. J., Suzuki, Y., Krajewski, J. J., Gausepohl, S. C., and Lee, M., Appl. Phys. Lett. 70, 3035 (1997).Google Scholar
3. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramech, R., and Chen, L. H., Science 264, 413 (1994).Google Scholar
4. Aarts, J., Freisem, S., Hendrikx, R., and Zanbergen, H. W., Appl. Phys. Lett. 72, 2975 (1998).Google Scholar
5. Rodriguez-Martinez, L. M. and Attfield, J. P., Phys. Rev. B 58, 2426 (1998).Google Scholar
6. Laukhin, V., Fontcuberta, J., Garcia-Munoz, J. L., and Obradors, X., Phys. Rev. B 56, R10009 (1997).Google Scholar
7. Shinde, S. R., Ramesh, R., Lofland, S. E., Bhagat, S. M., Ogale, S. B., Sharma, R. P., and Venkatesan, T., Appl. Phys. Lett 72, 3443 (1998).Google Scholar
8. Kay, H. F. and Vousden, P., Phil. Mag. 40, 1019 (1949).Google Scholar
9. Callaghan, A., Moeller, C. W., and Ward, R., Inorg. Chem. 5, 1572 (1966).Google Scholar
10. Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., Dover, R. B. van, Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F. Jr., Science 258, 1766 (1992).Google Scholar
11. Nath, T. K., Lee, M. K., Eom, C. B., Smoak, M., and Tsui, F., in preparation.Google Scholar