Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T01:52:31.404Z Has data issue: false hasContentIssue false

Strain Measurements from Single Grains in Passivated Aluminum Conductor Lines by X-Ray Microdiffraction During Electromigration

Published online by Cambridge University Press:  17 March 2011

K. J. Hwang
Affiliation:
Materials Research Center, Lehigh University, Bethlehem, PA 18015, [email protected]
G. S. Cargill III
Affiliation:
Materials Research Center, Lehigh University, Bethlehem, PA 18015
T. Marieb
Affiliation:
Components Research, Intel Corp., Hillsboro, OR 97124
Get access

Abstract

We describe a method for determining the local strain state of passivated aluminum metal lines from single grains within 2.6 µm × 7.0 µm × 0.75 µm sized regions along the line. X-ray microbeam diffraction is used to obtain localized measurements of thermal and electromigration-induced strain during 37 hours of electromigration in a passivated 2.6 µm-wide, 300 µm-long pure Al conductor line at a current density of 4.2×105 A/cm2 and temperature of 270°C. Diffraction from single grains is used to measure both the in-plane and normal components of strain and their evolution during electromigration at several positions along the line.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hinode, K., Asano, I., and Homma, Y., IEEE Trans. Elect. Dev. 36, 10501055 (1989).10.1109/16.24347Google Scholar
[2] Yue, J. T., Funsten, W. P., and Taylor, R. V., IEEE Int. Reliability Phys. Symp. Proc. (IEEE, New York, 1985), pp. 18.Google Scholar
[3] Yeo, I.-S., S. Anderson, G. H., Ho, P. S., and Hu, C. K., J. Appl. Phys. 78, 953961(1995).10.1063/1.360289Google Scholar
[4] Greenbaum, B., Sauter, A. I., Flinn, P. A., and Nix, W. D., Appl. Phys. Lett. 58, 18451847 (1991).10.1063/1.105075Google Scholar
[5] Korhonen, M. A., Black, R. D., and Li, C-Y., J. Appl. Phys. 69, 1748 (1991).10.1063/1.347222Google Scholar
[6] Besser, P. R., Brennan, S., and Bravman, J. C., J. Mater. Res. 9, 1324 (1994).10.1557/JMR.1994.0013Google Scholar
[7] Flinn, P. A., and Chiang, C., J. Appl. Phys. 67, 29272931 (1990).10.1063/1.345411Google Scholar
[8] Tezaki, A., Mineta, T., Egawa, H., and Noguchi, T., IEEE Int. Reliability Phys. Symp. Proc. (IEEE, New York, 1990), pp. 221229.Google Scholar
[9] Flinn, P. A., MRS Soc. Symp. Proc. 188, 3 (1990).10.1557/PROC-188-3Google Scholar
[10] Marcus, M.A., Flood, W. F., Cirelli, R. A., Kistler, R. C., Ciampa, N. A., Mansfield, W.M., Barr, D. L., Volkert, C. A., and Steiner, K. G., MRS Soc. Symp. Proc. 338, 203 (1994).10.1557/PROC-338-203Google Scholar
[11] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., MRS Symp. Proc. 427, 35 (1996).10.1557/PROC-427-35Google Scholar
[12] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., MRS Symp. Proc. 473, 273 (1997).10.1557/PROC-473-273Google Scholar
[13] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., and Hu, C.-K., Appl. Phys. Lett. 72, 1296 (1998).10.1063/1.120604Google Scholar
[14] Chung, J.-S., Tamura, N., Ice, G. E., Larson, B. C., and Budai, J. D., MRS Soc. Symp. Proc. 563, 169 (1999).10.1557/PROC-563-169Google Scholar
[15] Gerlich, D., and Fisher, E. S., J. Phys. Chem. Solids 30, 11971205 (1969).10.1016/0022-3697(69)90377-1Google Scholar
[16] Dolle, H., and Hauk, V., Z. Metallk. 69, 410 (1978).Google Scholar