Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:16:06.576Z Has data issue: false hasContentIssue false

Strain compensation effect on stacked InAs self-assembled quantum dots embedded in GaNAs layers

Published online by Cambridge University Press:  01 February 2011

Ryuji Oshima
Affiliation:
[email protected], Institute of Apllied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 306-8573, Japan, +81-29-853-6902, +81-29-853-6902
Takayuki Hashimoto
Affiliation:
[email protected], Institute of Applied Physics, University of Tsukuba, Japan
Hidemi Shigekawa
Affiliation:
[email protected], Institute of Applied Physics, University of Tsukuba, Japan
Yoshitaka Okada
Affiliation:
[email protected], Institute of Applied Physics, University of Tsukuba
Get access

Abstract

We have studied the effect of strain compensation in multiple stacking of InAs self-assembled quantum dots on GaAs (001) substrates grown by atomic hydrogen assisted RF-molecular beam epitaxy. The GaNxAs1−x material was used as a strain compensating spacer layer. We confirmed by high resolution x-ray diffraction measurements that a 40 nm GaN0.005As0.995 strain compensating layer provides compressive strain to compensate for tensile strain induced by 2.0 ML InAs quantum dots. Consequently, we achieved a multiple stack of InAs QDs up to 30 layers without formation of coalesced QDs, and the density of QDs exceeded 1012 cm−2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Arakawa, Y. and Sakaki, H., Appl. Phys Lett. 40, 939 (1982).Google Scholar
2 Sugawara, M., Ebe, H., Hatori, N., and Ishida, M., Phys. Rev. B 69, 235332 (2004).Google Scholar
3 Okada, Y., Shiotsuka, N., Komiyama, H., Akahane, K., and Ohtani, N., Proceedings of 20th European Photovoltaic Solar Energy Conference, June 2005, 1AO.7.6. Google Scholar
4 Wasilewski, Z. R., Fafard, S., McCaffrey, J. P., J. Cryst. Growth. 201/202, 1131 (1999).Google Scholar
5 He, J., Notzel, R., Offermans, P., Koenraad, P. M., Gong, Q., Hamhuis, G. J., Eijkemans, T. J., and Wolter, J. H., Appl. Phys. Lett. 85, 2711 (2004).Google Scholar
6 Nuntawong, N., Birudavolu, S., Hains, C. P., Huang, S., Xu, H., and Huffaker, D. L., Appl. Phys. Lett. 85, 3050 (2004).Google Scholar
7 Ganapathy, S., Zhang, X. Q., Suemune, I., Uesugi, K., Kumano, H., Kim, B. J., and Seong, T. -Y., Jpn. J. Appl. Phys. 42, 5598 (2003).Google Scholar
8 Okada, Y., Fujita, T., and Kawabe, M., Appl. Phys. Lett. 67, 676 (1995).Google Scholar
9 Shimizu, Y., Kobayashi, N., Uedono, A., and Okada, Y., J. Crystal Growth. 278, 553 (2005).Google Scholar
10 Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
11 Solomon, G. S., Trezza, J. A., Marshall, A. F., and Harris, J. S. Jr, Phys. Rev. Lett. 76, 952 (1996).Google Scholar
12 Akahane, K., Ohtani, N., Okada, Y., and Kawabe, M., J. Cryst. Growth. 245, 31 (2002).Google Scholar