Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T16:19:36.756Z Has data issue: false hasContentIssue false

Strain and Pressure Gauges from Tough, Conducting and Edible Hydrogels

Published online by Cambridge University Press:  09 June 2015

Alex Keller
Affiliation:
Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
Dominik Benz
Affiliation:
Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
Marc in het Panhuis
Affiliation:
Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia. Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
Get access

Abstract

The development of highly conductive, robust edible hydrogels was investigated using a combination of the biopolymers gellan gum and gelatin, a common salt (NaCl) and plant-derived cross-linker (genipin). Robust strain gauge/pressure sensors were developed using edible materials to demonstrate the potential of these hydrogels. The hydrogels exhibited gauge factor and pressure sensitivity values of 7.6 ± 0.1 and 400 ± 7 μΩ/Pa for loads up to 3 kPa, respectively. Furthermore, these devices were able to operate under larger loads with gauge factor and pressure sensitivity values of 0.308 ± 0.002 and 7.17 ± 0.05 μΩ/Pa, respectively, for loads between 9 kPa and 280 kPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Trivedi, D., Rahn, C. D., Kier, W. M., and Walker, I. D., Appl. Bionics Biomech., 5, 3, (2008).CrossRefGoogle Scholar
Morris, E. R., Nishinari, K., and Rinaudo, M., Food Hydrocoll., 28, 2, (2012).CrossRefGoogle Scholar
Joly-Duhamel, C., Hellio, D., and Djabourov, M., Langmuir, 18, 19, (2002).Google Scholar
Sun, J. Y., Zhao, X. H., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., et al. , Nature, 489, 7414, (2012).CrossRefGoogle Scholar
Kishi, R., Kubota, K., Miura, T., Yamaguchi, T., Okuzaki, H., et al. , J. Mater. Chem. C, 2, 4, (2014).CrossRefGoogle Scholar
Bakarich, S.E., Pidcock, G.C., Balding, P., Stevens, L., Calvert, P. and in het Panhuis, M., Soft Matter, 8, 9985 (2012).CrossRefGoogle Scholar
Bakarich, S.E., in het Panhuis, M., Beirne, S., Wallace, G.G. and Spinks, G., J. Mater. Chem. B, 1, 4939 (2013).CrossRefGoogle Scholar
Kirchmajer, D. M. and in het Panhuis, M., J. Mater Chem. B, 2, 4694 (2014).CrossRefGoogle Scholar
Yuan, S., Tang, Q., He, B., and Zhao, Y., J. Power Sources, 260, 225, (2014).CrossRefGoogle Scholar
Warren, H., Gately, R. D., O’Brien, P., Gorkin, R., and in het Panhuis, M., J. Polym. Sci. Part B Polym. Phys., 52, 13, (2014).CrossRefGoogle Scholar
Pan, L., Yu, G., Zhai, D., Lee, H.R., Zhao, W., Liu, N., Wang, H., Tee, B.C.K., Shi, Y., Cui, Y., and Bao, Z., Proc. Natl. Acad. Sci. U.S.A., 109, 9287, (2012).CrossRefGoogle Scholar
Warren, H., and in het Panhuis, M., Synth. Met., 206, 61, (2015).CrossRefGoogle Scholar
Keplinger, C., Sun, J. Y., Foo, C. C., Rothemund, P., Whitesides, G. M., et al. , Science, 341, 6149, (2013).CrossRefGoogle Scholar
Keller, A. and in het Panhuis, M., MRS Proceedings 1717, (2015), doi:10.1557/opl.2015.17.CrossRefGoogle Scholar
Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., et al. , Nat Commun, 5, (2014).Google Scholar