Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:38:00.991Z Has data issue: false hasContentIssue false

STM Study of a Defect-Related Si(001)-c(4×4) Surface

Published online by Cambridge University Press:  10 February 2011

Masamichi Yoshimura
Affiliation:
Toyota Technological Institute, Hisakata, Tempaku-ku, Nagoya 468, Japan
Kazuyuki Ueda
Affiliation:
Toyota Technological Institute, Hisakata, Tempaku-ku, Nagoya 468, Japan
Get access

Abstract

We demonstrate scanning tunneling microscopy studies of a Si(001)-c(4×4) structure which consists of a considerable number of dimer vacancies (missing dimers). Two different preparation methods are examined; one is hydrogen desorption and another is a special annealing and cooling process without hydrogen. The STM images reveal that atomic structure of the c(4×4) prepared without hydrogen is quite different from that prepared with hydrogen and is well described by the missing dimer model. A moiré-like pattern is observed on the c(4×4) surface prepared by hydrogen with an increase in the tip-sample distance, which suggests that the atoms lying in the subsurface should be considered for the precise description of the c(4×4) structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tromp, R. M., Hamers, R. J., and Demuth, J. E., Phys. Rev. Lett. 55, 1303 (1985);Google Scholar
Hamers, R. J., Tromp, R. M., and Demuth, J. E., Phys. Rev. B34, 5343 (1986).Google Scholar
2. Tabata, T., Aruga, T., and Murata, Y., Surf. Sci. 179, L63 (1987).Google Scholar
3. Wolkow, R. A., Phys. Rev. Lett. 74, 4448 (1995).Google Scholar
4. Ramstad, A., Brocks, G., and Kelly, P. J., Phys. Rev. B51, 14504 (1995).Google Scholar
5. Niehus, H., Kohler, U. K., Copel, M., and Demuth, J. E., J. Microsc. 152, 735 (1988).Google Scholar
6. Koo, J. -Y., Yi, J. -Y., Hwang, C., Kim, D. -H., Lee, S., Shin, D. -H., Phys. Rev. B52, 17269 (1995).Google Scholar
7. Pandey, K. C., in Proceedings of the Seventh International Conference on the Physics of Semiconductors, edited by Chadi, J. D. and Harrison, W. A. (Springer-Verlag, New York, 1985), p. 55.Google Scholar
8. Thomas, N. and Francombe, M. H., Appl. Phys. Lett. 11, 108 (1967).Google Scholar
9. Sakamoto, T., Takahashi, T., Suzuki, E., Shoji, A., Kawanami, H., Komiya, Y., and Tarui, Y., Surf. Sci. 86, 102 (1979).Google Scholar
10. Wang, H. -C., Lin, R. -F., and Wang, X., Phys. Rev. B36, 7712 (1987).Google Scholar
11. Kato, K., Ide, T., Nishimori, T., and Ichinokawa, T., Surf. Sci. 207, 177 (1988).Google Scholar
12. Ide, T. and Mizutani, T., Phys. Rev. B45, 1447 (1992).Google Scholar
13. Uhrberg, R. I. G., Northrup, J. E., Biegelsen, D. K., Bringans, R. D., and Swartz, L. -E., Phys. Rev. B46, 10251(1992).Google Scholar
14. Moriarty, P., Koenders, L., and Hughes, G., Phys. Rev. B47, 15950 (1993).Google Scholar
15. Yoshimura, M. and Ueda, K., unpublished.Google Scholar
16. Kobayashi, K. (private communication).Google Scholar