Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T03:16:33.107Z Has data issue: false hasContentIssue false

Stimulated Opticaltransitions in Er-Doped Silicon Nanostructures

Published online by Cambridge University Press:  11 February 2011

B. V. Kamenev
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102
V. I. Emel'yanov
Affiliation:
Moscow State University, Moscow, Russia
V. Yu. Timoshenko
Affiliation:
Moscow State University, Moscow, Russia
P. K. Kashkarov
Affiliation:
Moscow State University, Moscow, Russia
M.V. Lomonosov
Affiliation:
Moscow State University, Moscow, Russia
E. I. Terukov
Affiliation:
Ioffe Physico-Technical Institute, St. Petersburg, Russia
V. Kh. Kudoyarova
Affiliation:
Ioffe Physico-Technical Institute, St. Petersburg, Russia
Get access

Abstract

Photoluminescence (PL) of Er3+ ions in nanocrystalline (amorphous) silicon matrix has been investigated under a high level of optical excitation. A superlinear increase of the PL intensity, a shortening of the PL decay time, and strong angular dependence were found at the excitation intensity above 200 kW/cm2. These effects are observed only in samples with presence of silicon nanocrystalls and explained by stimulated optical transitions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pomrenke, G. S., Klein, P. B., Langer, D. W. (Eds.), Rare Earth Doped Semiconductors, MRS Symposia Proceedings No. 301, Materials Research Society, Pittsburgh, PA, 1993.Google Scholar
2. Priolo, F., Franzo, G., Coffa, S., Polman, A., Libertino, S., Barklie, R., and Carey, D., J. Appl. Phys. 78, 3874 (1995).Google Scholar
3. Fuhs, W., Ulber, I., Weiser, G., Bresler, M. S., Gusev, O. B., Kuznetsov, A. N., Kudoyarova, V. Kh., Terukov, E. I., and Yassievich, I. N., Phys. Rev. B 56, 9545 (1997)Google Scholar
4. Shin, J. H., Serna, R., van den Hoven, G. N., Polman, A., van Sark, W.G.J.H. M., Vredenberg, A. M., Appl. Phys. Lett. 68, 997 (1996).Google Scholar
5. Watanabe, K., Fujii, M., and Hayashi, S. J. Appl. Phys. 90, 4761 (2001)Google Scholar
6. Schmidt, M., Heitmann, J., Scholz, R. and Zacharias, M. J. of Non-Cryst. Sol., 299–302, 678 (2002).Google Scholar
7. Emel'yanov, V. I., Kamenev, B. V., Kashkarov, P. K., Konstantinova, E.A., Timoshenko, V. Yu., Terukov, E. I., Bresler, M. S., Gusev, O. B.. Phys. Sol. State 42, 1410 (2000).Google Scholar
8. Kamenev, B. V., Emel'yanov, V. I., Konstantinova, E. A., Kashkarov, P. K., Timoshenko, V. Yu., Chao, Chen, Kudoyarova, V. Kh., and Terukov, E. I.. Applied Physics B74, p.151154 (2002).Google Scholar
9. Kamenev, B. V., Timoshenko, V. Yu., Konstantinova, E. A., Kudoyarova, V. Kh., Terukov, E. I., and Kashkarov, P. K. J. of Non-Cryst. Sol., 299–302, p. 668 (2002).Google Scholar