Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:17:58.323Z Has data issue: false hasContentIssue false

Steady State Photoconductivity in Conjugated Polymers

Published online by Cambridge University Press:  21 March 2011

C. D. Sitch
Affiliation:
Organic Electroactive Materials Research Group, Department of Physics, University of Durham, South Road, Durham. DH1 3LE., UK
D. P. Halliday
Affiliation:
Organic Electroactive Materials Research Group, Department of Physics, University of Durham, South Road, Durham. DH1 3LE., UK
A. P. Monkman
Affiliation:
Organic Electroactive Materials Research Group, Department of Physics, University of Durham, South Road, Durham. DH1 3LE., UK
Get access

Abstract

Visible and ultraviolet photoconductivity (PC) measurements have been performed on thick (7[.proportional]m) and thin (170nm) films of poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] (MEH-PPV) sandwiched between indium tin oxide (ITO) and semitransparent gold (Au) electrodes. PC spectra were obtained for samples under different bias polarities and for illumination through the ITO electrode and through the Au electrode. The results obtained indicate that the absorbed photons form excitons that dissociate extrinsically at or near the electrodes to form hole polarons or intrinsically at higher photon energies in the bulk polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Santos, D.A. Dos, Bredas, J.L., Logdlund, M., and Salaneck, W.R., Nature, 397 121128 (1999).Google Scholar
2. Osterbacka, R., Juska, G., Arlauskas, K., Pal, A.J., Kalman, K.M., and Stubb, H., J. Appl. Phys., 84 33593363 (1998).Google Scholar
3. Wei, X., Raikh, M., Vardeny, Z.V., Yang, Y., and Moses, D., 49 1748017483 (1994).Google Scholar
4. Kim, K., Lee, D.W., and Jin, J.I., Synth. Met., 114 4956 (2000).Google Scholar
5. Marks, R.N., Bradley, D.D.C., Jackson, R.W., Burn, P.L., and Holmes, A.B., 57 41284133 (1993).Google Scholar
6. Barth, S. and Bassler, H., 79 44454448 (1997).Google Scholar
7. Barth, S., Bassler, H., Rost, H., and Horhold, H.H., Phys. Rev. B-Condens Matter, 56 3844 (1997).Google Scholar
8. Barth, S., Bassler, H., Wehrmeister, T., and Mullen, K., 106 321327 (1997).Google Scholar
9. Barth, S., Bassler, H., Scherf, U., and Mullen, K., 288 147154 (1998).Google Scholar
10. Feller, F. and Monkman, A.P., Phys. Rev. B, 61 1356013564 (2000).Google Scholar
11. Arkhipov, V.I., Emelianova, E.V., Kadashchuk, A., and Bassler, H., Chem. Phys., 266 97108 (2001).Google Scholar
12. Bassler, H., 175 1556 (1993).Google Scholar
13. Rohlfing, M. and Louie, S.G., Phys. Rev. Lett., 82 19591962 (1999).Google Scholar