Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T23:29:17.398Z Has data issue: false hasContentIssue false

Statistical Analysis of Nanoimpact Testing of Hard CrAl(Si)N Coatings

Published online by Cambridge University Press:  03 August 2011

A. Mosquera
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
L. Mera
Affiliation:
AIMEN, C/Relva, 27 A, Torneiros, 36410 Porrino, Pontevedra, Spain
G.S. Fox-Rabinovich
Affiliation:
Department of Mechanical Engineering, McMaster University, McMaster University 1280 Main St. W., Hamilton, Ont., Canada L8S 4L7
A. Martínez
Affiliation:
AIN-Centro de Ingeniería Avanzada de Superficies, Cordovilla, E-31191 Pamplona, Spain
I. Azkona
Affiliation:
Metal Estalki, Polígono Ugaldeguren 1 Ctra. Santo Domingo 4 Bis, Derio, 48160 Vizcaya, Spain
J. L Endrino*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
*
*Corresponding author: [email protected]
Get access

Abstract

Statistical studies involving the fracture behavior of coatings can play an important role in the mechanical analysis of films employed in the hard coating industry. In this study, Nanoimpact tests using a cube corner indenter were carried out in various CrAl(Si)N coatings for the quantitative assessment of properties of coatings like non-catastropic failure time and catastrophic failure time. These parameters decrease in value as silicon is incorporated in coatings, showing that this addition results in a decrease in ductility. Scanning electron microscope images were taken to the analyzed coatings exhibiting the residual imprints after nanoimpact test that were correlated with the fracture behavior of CrAl(Si)N coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Khamseh, S., Nose, M., Kawabata, T., Matsuda, K., Ikeno, S., Materials Transactions 51, 271 (2010).Google Scholar
[2] Wang, L., Zhang, G., Wood, R. J. K., Wang, S. C., Xue, Q., Surface and Coatings Technology 204, 3517 (2010).Google Scholar
[3] Endrino, J. L., Palacín, S., Aguirre, M. H., Gutiérrez, A., Schäfers, F., Acta Materialia 55, 2129 (2007).Google Scholar
[4] Endrino, J. L., Palacín, S., Gutiérrez, A., Schäffers, F., Krzanowski, J. E., Journal of Materials Science 42, 7607 (2007).Google Scholar
[5] Mosquera, A., Mera, L., Fox-Rabinovich, G. S., Martínez, R., Azkona, I., Endrino, J. L., Nanoscience and Nanotechnology Letters 2, 352 (2010).Google Scholar
[6] Batista, J. C. A., Godoy, C., Matthews, A., Surface and Coatings Technology 163164, 353 (2003).Google Scholar
[7] Suresha, S. J., Bhide, R., Jayaram, V., Biswas, S. K., Materials Science and Engineering: A 429, 252 (2006).Google Scholar
[8] Matoy, K., Schönherr, H., Detzel, T., Schöberl, T., Pippan, R., Motz, C., Dehm, G., Thin Solid Films 518, 247 (2009).Google Scholar
[9] Ding, X. z., Zeng, X. T., Liu, Y. C., Fang, F. Z., Lim, G. C., Thin Solid Films 516, 1710 (2008).Google Scholar
[10] Meyers, M. A., Mechanical Behavior of Materials, 1st ed. (Prencite-Hall, New Jersey, 1999) p. 627.Google Scholar