Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:11:49.806Z Has data issue: false hasContentIssue false

Stainless Steel Welds in Containers of Nuclear Waste

Published online by Cambridge University Press:  28 February 2011

H. A. Menendez
Affiliation:
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory and the Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA
C. F. Willis
Affiliation:
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory and the Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA
T. M. Devine
Affiliation:
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory and the Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA
Get access

Abstract

The as-welded microstructure of 308 stainless steel is usually a mixture of austenite and ferrite phases. The morphology of the duplex structure is a function of the composition of the weld. The resistance to sensitization is proportional to the amount and distribution of austenite-ferrite boundary area and the probability of precipitation of embrittling phases such as σ and α′ is proportional to the volume fraction of ferrite phase. Consequently, the properties of 308 stainless steel welds are strong functions of their microstructures. These, in turn, are primarily determined by the composition of the weld. Accordingly, to maximize the properties of welds of canisters of nuclear waste may require a restriction of the compositional limits of 308 stainless steel in order to preclude the formation of microstructures that are particularly susceptible to sensitization and/or mechanical embrittlement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, J.S. and Devine, T.M., Corrosion, 45, 62 (1989).CrossRefGoogle Scholar
2. Menendez, H.A. and Devine, T.M., Corrosion, 46, 410 (1990).Google Scholar
3. Menendez, H.A. and Devine, T.M., submitted to Weld. J.Google Scholar
4. Chen, J.S., M.S. Thesis, University of California at Berkeley, 1988.Google Scholar
5. Menendez, H.A, M.S. Thesis, University of California at Berkeley, 1989.Google Scholar
6. ASTM Standard Practice A262E.Google Scholar
7. Willis, C.F., M.S. Thesis, University of California at Berkeley, 1990.Google Scholar
8. Takalo, T., Suutala, N. and Moisio, T., Met. Trans. A, 10A, 1173 (1979).CrossRefGoogle Scholar
9. Suutala, N., Takalo, T. and Moisio, T., Met. Trans. A, 10A, 1183 (1979).Google Scholar
10. Suutala, N., Takalo, T. and Moisio, T., Met. Trans. A, 11A, 717 (1980).Google Scholar
11. Lippold, J. C. and Savage, W.F., Weld. J., 63, 48s (1980).Google Scholar
12. David, S. A. and Goodwin, G. M., in Proceedings of the Bolton Landing Conference on Welding, edited by Solomon, H. and Nippes, E. (General Electric, Schenectady, New York, 1976).Google Scholar
13. David, S. A., Goodwin, G. M. and Braski, D.N., Weld. Res. J., 3304 (1979).Google Scholar
14. David, S. A., Weld. J., 64, 63s (1981).Google Scholar
15. Fredriksson, H., Met. Trans., 3, 2989 (1972).CrossRefGoogle Scholar
16. Brooks, J. A., Williams, J.C. and Thompson, A. W., Met. Trans A, 14, 1271 (1983).Google Scholar
17. Singh, J., Purdy, G. R. and Weatherly, G.C., Met. Trans. A, 16A, 1363 (1985).Google Scholar
18. Suutala, N., Takalo, T. and Moisio, T., Met. Trans. A, 10A, 512 (1979).Google Scholar
19. Takalo, T, Suutala, N. and Moisio, T., Met. Trans. A, 7A, 1591 (1976).Google Scholar
20. ASTM Standard Practice E562, Determining Volume Fraction by Systematic Manual Point Count (ASTM, Philadelphia, Pennsylvania, 1989).Google Scholar
21. Underwood, E.E., in Quantitative Microscopy, edited by Deltoff, R. T. and Rhines, F. N. (McGraw Hill Book Company, New York, 1968) p. 77.Google Scholar
22. Devine, T.M., J. Electrochem. Soc. 126, 374 (1979).Google Scholar
23. Devine, T M., Met Trans. A, 11A, 791 (1980).Google Scholar
24. Devine, T.M., Acta. Met., 36, 1491 (1988).Google Scholar
25. Mon, K. and Devine, T.M. (unpublished results) 1988.Google Scholar
26. Willis, C.F., Gronsky, R. and Devine, T.M., submitted to Met. Trans A.Google Scholar
27. Solomon, H. D., General Electric Technical Information Series. No. 76CRD188 (General Electric, Schenectady, New York, 1977).Google Scholar
28. Southwick, P.D. and Honeycombe, R.W.K., Met Sci., 16, 475 (1982).Google Scholar
29. Foulds, J. and Moteff, J., Met. Trans. A, 13A, 173 (1982).Google Scholar
30. Vitek, J.M. and David, S.A., Weld. J., 63, 246s (1984).Google Scholar
31.
32. Menendez, H. A. and Devine, T.M., submitted to Met. Trans. A.Google Scholar