Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:26:28.039Z Has data issue: false hasContentIssue false

The Staebler-Wronski Effect: New Physical Approaches and Insights as a Route to Reveal its Origin

Published online by Cambridge University Press:  01 February 2011

Arno H.M. Smets
Affiliation:
[email protected]@gmail.com, Delft University of Technology, Delft, Netherlands
Chris R. Wronski
Affiliation:
[email protected], Pennsylvania State University, State College, United States
Miro Zeman
Affiliation:
[email protected], Delft University of Technology, Delft, Netherlands
M. van de Sanden
Affiliation:
[email protected], Eindhoven University of Technology, Eindhoven, Netherlands
Get access

Abstract

In the recent years more and more theoretical and experimental evidence have been found that the hydrogen bonded to silicon in dense hydrogenated amorphous silicon (a-Si:H) predominantly resides in hydrogenated divacancies. In this contribution we will philosophize about the option that the small fraction of divacancies, missing at least one of its bonded hydrogen, may correspond to some of the native and metastable defect states of a-Si:H. We will discuss that such defect entities are an interesting basis for new and alternative views on the origin of the SWE.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nadazdy, V. and Zeman, M., Phys. Rev. B 69, 165213 (2004).Google Scholar
2 Niu, X., PhD Thesis, “Nature and evolution of light induced defects in hydrogenated amorphous silicon”, Pennsylvania state University (2006).Google Scholar
3 Wronski, C. et al., to be submitted to proc. of 35th IEEE PSC (2010).Google Scholar
4 Deng, J., et al., Proceedings of the 4th WCPE, p. 1576 (IEEE NY 2006).Google Scholar
5 Deng, J., et al., Mater. Res. Soc. Symp. Proc. 910, A0202 (2006).Google Scholar
6 Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
7 Branz, H.M., Phys. Rev. B 59, 5498 (1999).Google Scholar
8 Smets, A.H.M., et al., Appl. Phys. Lett. 82, 1547 (2003).Google Scholar
9 Smets, A.H.M. and Sanden, M.C.M. van de, Phys. Rev. B 76, 073202 (2007).Google Scholar
10 Smets, A.H.M., et al., submitted for publication (2010).Google Scholar
11 Baum, J., et al., Phys. Rev. Lett. 56, 1377 (1986).Google Scholar
12 Stephen, J.T., et al., Mat. Res. Soc. Symp. Proc. Vol. 467, 159 (1997).Google Scholar
13 Bhide, V.G., et al., J. Appl. Phys. 62, 108 (1987).Google Scholar
14 Suzuki, R., et al., Jap. J. of Appl. Phys. 30, 2438 (1991).Google Scholar
15 Gordo, P.M., et al., Rad. Phys. Chem. 76, 220 (2007).Google Scholar
16 Remes, Z., et al., Phys. Rev. B 56, 12710 (1997).Google Scholar
17 Remes, Z., et al., J. Non-Cryst. Solids 227–230, 876 (1998).Google Scholar
18 Smets, A.H.M., Matsui, T., and Kondo, M., Appl. Phys. Lett. 92, 033506 (2008).Google Scholar
19 Smets, A.H.M., Matsui, T., and Kondo, M., J. Appl. Phys. 104, 034508 (2008).Google Scholar
20 Chabal, Y.J., et al., Physica B 273-274, 152 (1999).Google Scholar
21 Smets, A.H.M. and Sanden, M.C.M. van de, to be published.Google Scholar
22 Coutinho, J., et al., J. Phys.: Condens. Matter 15, S2809 (2003).Google Scholar
23 Watkins, G.D. and Corbett, J.W., Phys. Rev. 138, A543 (1963).Google Scholar
24 Kalma, A.H. and Corelli, J.C., Phys. Rev. 173, 734 (1968).Google Scholar
25 Young, R.C., and Corelli, J.C., Phys. Rev. B 5, 1455 (1977).Google Scholar
26 Lindefelt, U., and Yong-Liang, W., Phys. Rev. B 38, 4107 (1988).Google Scholar
27 Carlson, D.E. and Rajan, K., J. Appl. Phys. 83, 1726 (1998).Google Scholar
28 Herring, C., et al., Phys. Rev. B 64, 125209 (2001).Google Scholar