Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:17:55.454Z Has data issue: false hasContentIssue false

Stacking-Fault Energies in Silicon, Diamond, and Silicon Carbide

Published online by Cambridge University Press:  28 February 2011

P. J. H. Denteneer*
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, U.S.A
Get access

Abstract

Stacking faults in a perfect crystal can be seen as limiting structures of certain series of polytypes of that crystal. A parametrization of the energy of polytypes in terms of interaction constants between layers therefore allows for the calculation of stacking-fault energies. The first-principles pseudopotential-density-functional method is used to calculate total energies of a few simple polytypes of silicon and carbon. The energies of intrinsic and extrinsic stacking faults (γISF and γESF , respectively) in silicon and diamond that follow from these calculations are in much better agreement with available experimental numbers than in previous theoretical approaches. I find: γISF = 47 mJm-2 and γESF = 36 mJm-2 for Si, γISF = 300 mJm-2 and γESF = 253 mJm-2 for diamond. From recently published similar calculations for polytypes of silicon carbide one obtains a negative energy for the extrinsic stacking fault, if zincblende silicon carbide is taken as the unfaulted structure, suggesting the observed occurrence in nature of polytypism in silicon carbide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

1. Chou, M. Y., Cohen, M. L., and Louie, S. G., Phys. Rev. B 32, 7979 (1985).Google Scholar
2. Denteneer, P. J. H. and Haeringen, W. van, J. Phys. C 20, L883 (1987).CrossRefGoogle Scholar
3. Verma, A. R. and Krishna, P., Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).Google Scholar
4. Cheng, C., Needs, R. J., and Heine, V., J. Phys. C 21, 1049 (1988).Google Scholar
5. Smith, J., Yeomans, J., and Heine, V., in Modulated Structure Materials, edited by Tsakalakos, T. (Nijhoff, Dordrecht, 1984).Google Scholar
6. Ihm, J., Zunger, A., and Cohen, M. L., J. Phys. C 12, 4409 (1979)Google Scholar
P. Denteneer, J. H., Ph. D. thesis, Eindhoven University of Technology (1987).Google Scholar
7. Hamann, D. R., Schliter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
8. The carbon potential is the same as used in: Bernholc, J., Antonelli, A., Sole, T. M. Del, Bar-Yam, Y., and Pantelides, S. T., to be published.Google Scholar
9. Denteneer, P. J. H., Solid State Comm. 59, 829 (1986).CrossRefGoogle Scholar
10. Föll, H. and Carter, C., Phil. Mag. 40, A 497 (1979).Google Scholar
11. Alexander, H., J. Physique Coll. 40, C6, 1 (1979).Google Scholar
12. Pirouz, P., Cockayne, D. J. H., Sumida, N., Hirsch, P., and Lang, A. R., Proc. Roy. Soc. Lond. A 386, 241 (1983).Google Scholar
13. Chen, L. J. and Falicov, L. M., Phil. Mag. 29, 1133 (1974).Google Scholar
14. Altmann, S. L., Lodge, K. W., and Lapiccirella, A., Phil. Mag. 47, A 827 (1983).CrossRefGoogle Scholar
15. Persson, A., Phil. Mag. 47, A 835 (1983).Google Scholar