Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T17:05:17.491Z Has data issue: false hasContentIssue false

Stacked Boron Doped Poly-Crystalline Silicon-Germanium Layers: an Excellent MEMS Structural Material

Published online by Cambridge University Press:  01 February 2011

Gert Claes
Affiliation:
[email protected], IMEC / K.U.Leuven, CMOSDR/CTI, Kapeldreef 75, Leuven, N/A, Belgium
Gregory Van Barel
Affiliation:
[email protected], IMEC, Leuven, N/A, Belgium
Rita Van Hoof
Affiliation:
[email protected], IMEC, Leuven, N/A, Belgium
Bert Du Bois
Affiliation:
[email protected], IMEC, Leuven, N/A, Belgium
Maria Gromova
Affiliation:
[email protected], IMEC, Leuven, N/A, Belgium
Agnes Verbist
Affiliation:
[email protected], IMEC, Leuven, N/A, Belgium
Tom Van der Donck
Affiliation:
[email protected], K.U.Leuven, Metallurgy and Materials Engineering, Leuven, N/A, Belgium
Stefaan Decoutere
Affiliation:
[email protected], IMEC, Leuven, N/A, Belgium
Jean-Pierre Celis
Affiliation:
[email protected], K.U.Leuven, Metallurgy and Materials Engineering, Leuven, N/A, Belgium
Ann Witvrouw
Affiliation:
[email protected], IMEC, Leuven, N/A, Belgium
Get access

Abstract

In this work stacked boron doped poly-crystalline Silicon-Germanium (poly-SiGe) layers, which can be applied as structural MEMS layers, were studied. A standard 1 µm base layer, deposited at 480 ºC chuck temperature, is stacked until the required thickness (e.g. 10 x for a 10 µm thick layer). This 1 µm base layer consists of a PECVD seed layer (+/− 75 nm), a CVD crystallization layer (+/− 135 nm) and a PECVD layer to achieve the required thickness with a high growth-rate. The top part of this PECVD layer can optionally be used for optimizing the stress gradient by a stress compensation layer. This approach resulted in 4 µm thick poly-SiGe MEMS structural layers with low tensile stress (50 MPa), low resistivity (2 mΩcm) and a low strain gradient (< 1*10−5/µm).

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Franke, A.E. Heck, J.M. King, T.-J. and Howe, R.T. IEEE Journal of MEMS, 12(2), 160 (2003)Google Scholar
2. Scheurle, A. Fuchs, T. Kehr, K. Leinenbach, C. Kronmüller, S., Arias, A. Ceballos, J. Lagos, M.A. Mora, J.M. Muñoz, J.M., Ragel, A. Ramos, J. Aerde, S. Van, Spengler, J. Mehta, A. Verbist, A. Bois, B. Du and Witvrouw, A. Proc. IEEE MEMS 2007, 64 (2007)Google Scholar
3. Mehta, A. Gromova, M. Rusu, C. Olivier, R. Baert, K. Hoof, C. Van and Witvrouw, A. Proc.IEEE MEMS 2004, 721 (2004)Google Scholar
4. Donck, T. Van der, Proost, J. Rusu, C. Baert, K. Hoof, C. Van, Celis, J.-P. and Witvrouw, A. Proc. SPIE, 5342, 8 (2004)Google Scholar
5. Mehta, A. Gromova, M. Czarnecki, P. Baert, K. and Witvrouw, A. Proc. Transducers '05, 1326 (2005)Google Scholar
6. Bryce, G. Severi, S. Bois, B. Du, Willegems, M. Claes, G. Hoof, R. Van, Haspeslagh, L. Decoutere, S. and Witvrouw, A. Abstract submitted for ECSSiGe 2008 conference Google Scholar