Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:36:28.057Z Has data issue: false hasContentIssue false

Stability, Chemical Bonding and Vibrational Properties of Amorphous Carbon at Different Mass Density

Published online by Cambridge University Press:  15 February 2011

Th. Köhler
Affiliation:
Theoretische Physik III, Institut für Physik, Technische Universität, D - 09107 Chemnitz, Germany
Th. Frauenheim
Affiliation:
Theoretische Physik III, Institut für Physik, Technische Universität, D - 09107 Chemnitz, Germany
G. Jungnickel
Affiliation:
Theoretische Physik III, Institut für Physik, Technische Universität, D - 09107 Chemnitz, Germany
Get access

Abstract

We describe correlations between the atomic-scale structure and the global electronic and vibrational properties in amorphous carbon versus mass density. The model structures have been generated by applying different annealing regimes using a density-functional based molecular-dynamics (DF-MD) method. The stability of the amorphous modifications and the calculated vibrational density of states (VDOS) are strongly affected by the density and the annealing sequences, altering the chemical composition, the sp/sp2/sp3-clustering, the structure and related physical properties. A mass density of 3.0 g/cm3 is confirmed as a magic density favoring the formation of most stable a-C modifications having lowest defect densities and maximum band gap. In analyzing the vibrational spectra and the localization of modes in comparison with crystalline diamond and graphite, we identify the spectral signatures for chemically different bonded species and defects, that may be used for comparison with related Neutron-, Raman- and IR- work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Galli, G., Martin, R. M., Car, R. and Parrinello, M., Phys. Rev B 42, 7470 (1990).Google Scholar
2. Wang, C. Z., Ho, K. M. and Chan, C. T., Phys. Rev. Lett. 70, 611 (1993).Google Scholar
3. Frauenheim, Th., Blaudeck, P., Stephan, U. and Jungnickel, G., Phys. Rev. B48, 4823 (1993).Google Scholar
4. Drabold, D. A., Fedders, P. A., Stumm, P., Phys. Rev. B 49 (1994) 16415.Google Scholar
5. Tamor, M. A., Vassell, W. C., Journal of Applied Phys., in print.Google Scholar
6. Silva, S. R. P., Amaratunga, G. A. J., Constantinou, C. P., J. Appl. Phys. 72 (1992) 1149.Google Scholar
7. Stephan, U., Frauenheim, Th., Blaudeck, P. and Jungnickel, G., Phys. Rev. B, 49 (1994) 1489.Google Scholar
8. Frauenheim, Th., Jungnickel, G., Kdhler, Th., Stephan, U., Journ. Non-Cryst. Solids 182 (1995) 186.Google Scholar
9. Porezag, D., Frauenheim, Th., Kdhler, Th., Seifert, G., Kaschner, R., Phys. Rev. B, (15-tb May 1995) in print.Google Scholar
10. Seifert, G. and Jones, R.O., Z. Phys. D20, 77 (1991).Google Scholar
11. McKenzie, D. R., Muller, D. and Pailthorpe, P. A., Phys. Rev. Lett. 67 (1991) 773.Google Scholar
12. Li, F. and Lannin, J. S., Phys. Rev. Lett. 65 (1990) 1905.Google Scholar
13. Gaskell, P. H., Saeed, A., Chieux, P., and McKenzie, D. R., Phys. Rev. Lett. 67 (1991) 1286.Google Scholar
14. Wang, C. Z., Ho, K. M., Phys. Rev. Lett. 71 (1993) 1184.Google Scholar