Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T15:29:44.306Z Has data issue: false hasContentIssue false

Stability and Performance of YSZ Infiltrated Platinum Electrodes for Sensors and Solid Oxide Cells

Published online by Cambridge University Press:  13 May 2013

Aligul Buyukaksoy
Affiliation:
Missouri University of Science and Technology, Department of Materials Science & Engineering, 223 McNutt Hall, 1400 N. Bishop Rolla, MO 65409-0340506
Vladimir Petrovsky
Affiliation:
Missouri University of Science and Technology, Department of Materials Science & Engineering, 223 McNutt Hall, 1400 N. Bishop Rolla, MO 65409-0340506
Fatih Dogan
Affiliation:
Missouri University of Science and Technology, Department of Materials Science & Engineering, 223 McNutt Hall, 1400 N. Bishop Rolla, MO 65409-0340506
Get access

Abstract

Limited electrochemical performance and microstructure instability are crucial problems in Platinum electrodes for solid state electrochemical devices. YSZ infiltration into porous YSZ skeleton is a prospective method to enhance the electrochemical performance and stabilize the microstructure. In this work, the effect of Pt skeleton microstructure on the electrochemical performance and stability of Pt-YSZ electrodes prepared by infiltration was investigated. The electrode polarization resistance of YSZ infiltrated Pt electrode sintered at 800 °C was 0.060 Ohm.cm2 per electrode at 800 °C without degradation during the operation time of 51 hours. Triple phase boundary enhancement by YSZ infiltration and YSZ infiltration into Pt skeleton with smaller particle size resulted in the suppression of the electrochemical process observed at 150 Hz.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badwal, S. P. S. and Ciacchi, F. T., J. Appl. Electrochem. 16, 28 (1986).CrossRefGoogle Scholar
Adler, S. B., Chem. Rev. 14, 4791 (2004).CrossRefGoogle Scholar
ChaoYang, X., XuChen, L., Yan, Y., TiZhuang, W., ZhiMin, Z. and SuPing, Y., Appl. Surf. Sci. 257, 7952 (2011).CrossRefGoogle Scholar
Wang, X., Huang, H., Holme, T., Tian, X. and Prinz, F. B., J. Power Sources 175, 75 (2008).CrossRefGoogle Scholar
Barbucci, A., Bozzo, R., Cerisola, G. and Costamagna, P., Electrochim. Acta 47, 2183 (2002).CrossRefGoogle Scholar
Costamagna, P., Panizza, M., Cerisola, G. and Barbucci, A., Electrochim Acta 47, 1079 (2002).CrossRefGoogle Scholar
Sasaki, K., Tamura, J. and Dokiya, M., Solid State Ionics 144, 223 (2001).CrossRefGoogle Scholar
Yamamoto, O., Chujyo, Y., Aoki, K. and Furuichi, T., Sens. Actuators B 13-14, 31 (1993).CrossRefGoogle Scholar
Vohs, J. M. and Gorte, R. J., Adv. Mater. 21, 943 (2009).CrossRefGoogle Scholar
Sholklapper, T. Z., Radmilovic, V., Jacobson, C. P., Visco, S. J. and De Jonghe, L. C., Electrochem. Solid-State Lett. 10, B74 (2007).CrossRefGoogle Scholar
Zhan, Z., Bierschenk, D. M., Cronin, J. S. and Barnett, S. A., Energy Environ. Sci. 4, 3951 (2011).CrossRefGoogle Scholar
Buyukaksoy, A., Petrovsky, V. and Dogan, F., J. Electrochem. Soc 159, B666 (2012).CrossRefGoogle Scholar
Buyukaksoy, A., Petrovsky, V. and Dogan, F., J. Electrochem. Soc 159, B68 (2012).Google Scholar
Buyukaksoy, A., Petrovsky, V. and Dogan, F., J. Electrochem. Soc 160, F841 (2013).CrossRefGoogle Scholar