Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:01:07.000Z Has data issue: false hasContentIssue false

Stability and Dynamics of Boron Nitride Nanoscrolls

Published online by Cambridge University Press:  07 March 2011

Eric Perim*
Affiliation:
Applied Physics Department, State University of Campinas, 13083-459 Campinas, Sao Paulo, Brazil
Douglas S. Galvao
Affiliation:
Applied Physics Department, State University of Campinas, 13083-459 Campinas, Sao Paulo, Brazil
*
*corresponding author: [email protected]
Get access

Abstract

We report here molecular dynamics results for boron nitride nanoscroll structures (BNNSs) with relation to their stability and formation mechanisms. We show that, similarly to carbon nanoscrolls, BNNSs are stable due to van der Waals interactions among overlapping layers. The energy balance between losses and gains (due to elastic deformations and van der Waals interactions, respectively) when the structure is rolled up leads to the existence of a critical value of the internal scroll diameter where stable or metastable structures can be formed. The mechanisms of scroll formation and stability as a function of their chirality were also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bacon, R., J. Appl. Phys. 31, 283 (1960).Google Scholar
[2] Tomanék, D., Phys. B 323, 86 (2002).Google Scholar
[3] Amelinckx, S., Bernaerts, D., Zhang X, X. B., van Tendeloo, G., van Landuyt, J., Science 267, 1334 (1995).Google Scholar
[4] Viculis, L. M., Mack, J. J., Kaner, R. B., Science 299, 1361 (2003).Google Scholar
[5] Shioyama, H.., Akita, T., Carbon 41, 179 (2003).Google Scholar
[6] Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvão, D. S., and Baughman, R. H., Nano Lett. 4, 881 (2004).Google Scholar
[7] Rurali, R., Coluci, V. R., and Galvão, D. S., Phys. Rev. B 74, 085414 (2006).Google Scholar
[8] Braga, S. F., Coluci, V. R., Baughman, R. H., and Galvão, D. S., Chem. Phys. Lett. 441, 78 (2007).Google Scholar
[9] Braga, S. F., Coluci, V. R., Baughman, R. H., and Galvão, D. S., Phys. Rev. B 75, 125404 (2007).Google Scholar
[10] Xie, X., Ju, L., Feng, X., Sun, Y., Zhou, R., Liu, K., Fan, S., Li, Q., and Jiang, K., Nano Lett. 9, 2565 (2009).Google Scholar
[11] Rubio, A., Corkill, J. L., and Cohen, M. L., Phys. Rev. B 49, 5081 (1994).Google Scholar
[12] Blasé, X., Rubio, A., Louie S, S. G., and Cohen, M. L., Europhys. Lett. 28, 335 (1994).Google Scholar
[13] Perim, E. and Galvão, D. S., Nanotechnology 20, 335702 (2009).Google Scholar
[14] Jin, C., Lin, F., Suenaga, K., and Iijima, S., Phys. Rev. Lett. 102, 195505 (2009).Google Scholar
[15] Meyer, J. C., Chuvilin, A., Algara-Siller, G., Biskupek, J., and Kaiser, U., Nano Lett. 9, 2683 (2009).Google Scholar
[16] Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III, and Skiff, W. M., J. Am. Chem. Soc. 114, 25 (1992).Google Scholar
[17] Accelrys, Materials Studio Release Notes, Release 4.1, Accelrys Software, Inc.: San Diego, 2006, http://www.accelrys.com.Google Scholar
[18] Legoas, S. B., Coluci, V. R., Braga, S. F., Coura, P. Z., Dantas, S. O., and Galvão, D. S., Phys. Rev. Lett. 90, 055504 (2003).Google Scholar
[19] Legoas, S. B., Coluci, V. R., Braga, S. F., Coura, P. Z., Dantas, S. O., and Galvão, D. S., Nanotechnology 15, S184 (2004).Google Scholar
[20] Hall, L. J., Coluci, V. R., Galvão, D. S., Shah, S., Raj, R., Kozlov, M., Zhang, M., Dantas, S. O., and Baughman, R. H., Science 320, 504 (2008).Google Scholar
[21] Nosé, S., Mol. Phys. 52, 255 (1984).Google Scholar
[22] Zhang, Z. and Li, T., Appl. Phys. Lett. 97, 081909 (2010).Google Scholar
[23] Perim, E. and Galvão, D. S., to be published.Google Scholar