Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:30:21.840Z Has data issue: false hasContentIssue false

Sputtering of Au Induced by Single Xe Ion Impacts

Published online by Cambridge University Press:  10 February 2011

R. C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, USA
S. E. Donnelly
Affiliation:
Joule Physics Laboratory Research Institute, University of Salford, Salford, United Kingdom
Get access

Abstract

Sputtering of Au thin films has been determined for Xe ions with energies between 50 and 600 keV. In-situ transmission electron microscopy was used to observe sputtered Au during deposition on a carbon foil near the specimen. Total reflection and transmission sputtering yields for a 62 nm thick Au thin film were determined by ex-situ measurement of the total amount of Au on the carbon foils. In situ observations show that individual Xe ions eject Au nanopanicles as large as 7 nm in diameter with an average diameter of approximately 3 nm. Particle emission correlates with crater formation due to single ion impacts. Nanoparticle emission contributes significantly to the total sputtering yield for Xe ions in this energy range in either reflection or transmission geometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andersen, H. H. and Bay, H. L. in Sputtering by Particle Bombardment 1, Behrisch, R. ed., (Springer-Verlag, New York 1981).Google Scholar
2. Betz, G. and Wien, K., Int. J. Mass Spec. and Ion Proc. 140, 1 (1994).Google Scholar
3. Belykh, S. F., Bitensky, I. S., Mullajanov, D. and Rasulev, U. Kh. Nuci. Inst. Meth in Phys. Res. B 129, 451(1997).Google Scholar
4. Birtcher, R. C. and Donnelly, S. E., Phys. Rev. Lett. 77, 437(1996).Google Scholar
5. Merkle, K. L. and Jager, W., Phil. Mag, A44, 741 (1981).Google Scholar
6. Donnelly, S. E. and Birtcher, R. C., Phys. Rev. B 56, 13599(1997).Google Scholar
7. Allen, C. W., Funk, L. L. and Ryan, E. A., Mat. Res. Soc. Proc. Vol. 396, 641(1996).Google Scholar
8. Carbon foils from Fullam Inc., catalog ≈ 11250Google Scholar
9. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Ranges of Ions in Solids, (Pergamon Press, New York 1985).Google Scholar
10. Bay, H. L., Andersen, H. H., Hofer, W. O. and Nielsen, O., Nucl. Inst. and Meth. 132, 301(1976).Google Scholar
11. Merkle, K. L. and Pronko, P. P., J. Nucl. Mater. 53, 231(1974).Google Scholar
12. Sigmund, P., Phys. Rev. 184, 383, (1969).Google Scholar
13. G Ayrault, Averback, R. S. and Seidman, D. N., Scripta Met. 12, 119(1978).Google Scholar
14. Donnelly, S. E. and Birtcher, R. C., Phil. Mag. A79, 133 (1999).Google Scholar
15. Ghaly, M. and Nordlund, K. and Averback, R. S., Phil. Mag. A 79, 795(1999).Google Scholar
16. Betz, G. and Husinsky, W., Nucl. Inst. Meth in Phys. Res. B 102, 281(1995).Google Scholar