Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T08:54:23.587Z Has data issue: false hasContentIssue false

Spontaneous Ac Field Induced Mechanical Rotation in Magnetostrictive Fesib-Based Wires Subjected to Thermal Treatments

Published online by Cambridge University Press:  21 March 2011

V. Raposo
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Cantoblanco, Madrid, Spain Dpto. Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
A. Mitra
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Cantoblanco, Madrid, Spain National Metallurgical Laboratory, Jamshedpur, India
M. Vázquez
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Cantoblanco, Madrid, Spain
Get access

Abstract

An astonishing new phenomenon has been recently observed in magnetic wires. It consists of the spontaneous rotation of the wires when submitted to an exciting AC axial field with frequency of the order of kHz and amplitude above some threshold. The rotation is believed to appear due to interaction between generated magnetoelastic standing waves and induced eddy currents. In the present work rotational characteristics of Fe77.5Si7.5B15 and Fe73.5Si13.5B9Cu1Nb3wires in their as-cast amorphous state and after heat treatments leading to devitrification has been investigated. It is proved that this rotational phenomenon is only observed in samples with large enough magnetostriction irrespective of their structural character. Moreover, changes in rotational characteristics are ascribed to the structural modifications accompanying the devitrification process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chiriac, H., Marinescu, C.S., and Ovári, T.-A., IEEE Trans. Magn. 33 (1997) 3349.Google Scholar
2. Castaño, F.J., Vázquez, M., Chen, D.-X., Tena, M., Prados, C., Pina, E., Hernando, A., and Rivero, G., Appl. Phys. Lett. 75 (1999) 2117.Google Scholar
3. Chiriac, H., Ovári, T.-A. and Marinescu, C.S., J. Magn. Magn. Mat. 215–216 (2000) 413.Google Scholar
4. Castaño, F.J., Vázquez, M., Óvári, T.-A., Chen, D.-X., and Hernando, A., IEEE Trans. Magn. 36 (2000) 2791.Google Scholar
5. Vázquez, M., Castaño, F. J., Óvári, T.-A., Raposo, V., and Hernando, A., Sensors and Actuators A. 2934 (2001) (in press)Google Scholar
6. Raposo, V., Óvári, T.A. and Vázquez, M., IEEE Trans. Magn. (in press, issue July 2001)Google Scholar
7. Marín, P., Vázquez, M., Olofinjana, A.O. and Davies, H.A., Nanotructured Materials 10 (1998) 299.Google Scholar
8. Vázquez, M. and Chen, D.-X., IEEE Trans. Magn. 31 (1995) 1229.Google Scholar
9. Hernando, A. and Vázquez, M., in “Rapidly solidified alloys” (ed. Liebermann, H.H.), Marcel Dekker, Inc. New York, 1993 p. 553590.Google Scholar
10. Herzer, G., “Nanocrystalline Soft Magnetic Alloys”, Handbook of Magnetic Materials, Vol.10 (ed. Buschow, K.H.J), Elsevier Science B.V. 1997, p 417461.Google Scholar