No CrossRef data available.
Published online by Cambridge University Press: 15 March 2011
Variation of surface steps on sapphire (0001) and (1120) substrates processed with thermal annealing in air or a reducing environment at 1000 to 1400°C for 1 to 10 hours were investigated with an atomic force microscope (AFM). The annealed (0001) surfaces consist of atomically smooth and large terraces and atomic-height steps, whose configurations strongly depend on annealing conditions. On the (1120) surfaces, where crystallographic misorientation is almost an order of magnitude larger than that of the (0001) surfaces, step height and terraces increase in size with the longer annealing time and higher annealing temperature. Characteristic step figures due to the symmetry of atomic arrangement were observed on the (0001) surface.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.