Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T18:57:09.792Z Has data issue: false hasContentIssue false

Spectroscopic Studies of Low Dielectric Constant Fluorinated Amorphous Carbon Films for Ulsi Integrated Circuits

Published online by Cambridge University Press:  10 February 2011

Yanjun Ma
Affiliation:
Sharp Microelectronics Tech., 5700 NW Pacific Rim Blvd, Camas, WA 98607
Hongning Yang
Affiliation:
Sharp Microelectronics Tech., 5700 NW Pacific Rim Blvd, Camas, WA 98607
J. Guo
Affiliation:
Physics Department, Uppsala University, Uppsala, Sweden
C. Sathe
Affiliation:
Physics Department, Uppsala University, Uppsala, Sweden
A. Agui
Affiliation:
Physics Department, Uppsala University, Uppsala, Sweden
J. Nordgren
Affiliation:
Physics Department, Uppsala University, Uppsala, Sweden
Get access

Abstract

Performance of future generations of integrated circuits will be limited by the RC delay caused by on-chip interconnections. Overcoming this limitation requires the deployment of new high conductivity metals such as copper and low dielectric constant intermetal dielectrics (IMD). Fluorinated amorphous carbon (a-CFx) is a promising candidate for replacing SiO2 as the IMD. In this paper we investigated the structure and electronic properties of a-CFx thin films using high-resolution x-ray absorption, emission, and photoelectron spectroscopy. The composition and local bonding information were obtained and correlated with deposition conditions. The data suggest that the structure of the a-CFx is mostly of carbon rings and CF2 chains cross-linked with C atoms. The effects of growth temperature on the structure and the thermal stability of the film are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, (1997).Google Scholar
[2] Endo, K. and Tatsumi, T., J. Appl. Phys. 78, p. 1370 (1995); H. Kudo, R.Shinohara, and Y. Yamada, Mat. Res. Soc. Proc. 381, p. 105 (1995).Google Scholar
[3] Kudo, H., Shinohara, R., Takeishi, S., Awaji, N., and Yamada, Y.: Jpn. J. Appl. Phys. 35, 1583 (1996); A. Grill, V. Patel, K. L.Saenger, C. Jahnes, S. A. Cohen, A. G. Schrott, D.C. Edelstein, and J. R. Paraszcak, Mat. Res. Soc. Proc. 443, p. 155 (1996); T.W. Mountsier and Kumar, D., Mat. Res. Soc. Proc. 443, p. 41 (1996).Google Scholar
[4] Lu, T. M., McDonald, J. F., Dabral, S., Yang, G. R., You, L., and Bai, P., Mat. Res. Soc. Proc. 181, p55 (1990); Y. Lu, Ph. D. Thesis, Rensselaer Polytechnic Inst. (1993).Google Scholar
[5] Plano, M. A., Kumar, D., Cleary, T. J., Mat. Res. Soc. Symp. Proc. 476, 213 (1997).Google Scholar
[6] Warwick, T., Heimann, P., Mossessian, D., McKinney, W. and Padmore, H., Rev. Sci. Instr. 66, 2037 (1995).Google Scholar
[7] Möller, T., Synchrotron Radiation New 6, 16 (1996).Google Scholar
[8] Nordgren, J., Bray, G., Cramm, S., Nyholm, R., Rubensson, J. E. and Wassdahl, N., Rev. Sci. Instr. 60, 1690 (1989).Google Scholar
[9] Stohr, J., NEXAFS Spectroscopy, (Springer Series in Surface Sciences, No 25, Springer, NY, 1992), p109; R. McLaren, et al, Phys. Rev. A 36, 1683 (1987).Google Scholar
[10] Ma, Y., Wassdahl, N., Skytt, P., Guo, J., Nordgren, J., Johnson, P. D., Rubensson, J. E., Boske, T., Eberhardt, W., and Kevan, S., Phys. Rev. Lett. 69, 2598 (1992).Google Scholar
[11] Ma, Y., Skytt, P., Wassdahl, N., Glans, P., Mancini, D. C, Guo, J., and Nordgren, J., Phys. Rev. Lett. 71, 3725 (1993).Google Scholar
[12] Yang, H. N., Tweet, D., Ma, Y., Nguyen, T., Evans, D. R., Hsu, S. T., 1998 MRS Proceedings, to be published.Google Scholar