No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Near-field optics techniques make it possible to by-pass the optical diffraction limit (“uncertainty principle) and attain spatial resolution of λ/50 or better. We present near-field scanning optical spectroscopy (NSOS) data on α and ß mixed micro-crystals of perylene and on various aggregates of tetracene doped into PMMA. The spatial resolution is limited by the size of the scanning photon tip and its distance from the sample. We use nanofabricated optical fiber tips (aluminum coated) that are as small as 100 nm. These can be piezoelectrically scanned close to the sample. Fluorescence spectra easily differentiate between adjoining microcrystallites of α and β perylene, giving spectra identical with those of large (>1 cm) single crystals. The apparently homogeneous molecularly doped polymer samples of tetracene/PMMA have regions that fluoresce anywhere between green and red. Thus the spatially resolved spectra are much sharper and more detailed than the broad and featureless bulk spectra. The different emission spectra are attributed to different aggregates of the tetracene guest embedded in the PMMA host