Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T16:43:58.606Z Has data issue: false hasContentIssue false

Spatially Resolved Characterization of Electromigration-Induced Plastic Deformation in al (0.5WT% CU) Interconnect

Published online by Cambridge University Press:  11 February 2011

R.I. Barabash
Affiliation:
Metals & Ceramics Divisions, Oak Ridge National Laboratory, Oak Ridge TN 37831
G.E. Ice
Affiliation:
Metals & Ceramics Divisions, Oak Ridge National Laboratory, Oak Ridge TN 37831
N. Tamura
Affiliation:
Advanced Light Source, 1 Cyclotron Road, Berkeley CA 94720
J.R. Patel
Affiliation:
Advanced Light Source, 1 Cyclotron Road, Berkeley CA 94720
B.C. Valek
Affiliation:
Dept. Materials Science & Engineering, Stanford University, Stanford CA 94305
J. C. Bravman
Affiliation:
Dept. Materials Science & Engineering, Stanford University, Stanford CA 94305
R. Spolenak
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, D-7056 Stuttgart, Germany
Get access

Abstract

Electromigration during accelerated testing can induce early stage plastic deformation in Al interconnect lines as recently revealed by the white beam scanning X-ray microdiffraction. In the present paper, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in-situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking after electric current flow. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blech, I.A., J. Appl. Phys., 47, 1203 (1976).Google Scholar
Thompson, C.V. and Lloyd, J.R., Mater. Res. Soc., Bull. 18, 19 (1993).Google Scholar
Korhonen, M.A., Borgesen, P., Tu, K.N., and Li, C.-Y., J. Appl. Phys. 73, 3790 (1993).Google Scholar
Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B.C., Bravman, J.C., Spolenak, R., Brown, W.L., Marieb, T., Fujimoto, H., Batterman, B.W. and Patel, J.R., Appl. Phys. Lett. 80 (2002) 37243727.Google Scholar
5 Tamura, N.; Spolenak, R., Valek, B.C.; Manceau, A.; Meier Chang, M.; Celestre, R.S.; MacDowell, A.A.; Padmore, H.A. and Patel, J.R.; Review of Scientific Instruments 73 (2002) 13691372.Google Scholar
6 MacDowell, A.A., Celestre, R.S., Tamura, N., Spolenak, R., Valek, B.C., Brown, W.L., Bravman, J.C., Padmore, H.A., Batterman, B.W. and Patel, J.R., Nuclear Instruments and Methods in Physics Research A 467–468 (2001) 936943 Google Scholar
7 Ice, G.E. and Larson, B. C., Advanced Engineering Materials, (2002), 2, 10, 643646 Google Scholar
8 Larson, B.C., Yang, Wenge, Ice, G.E., Budai, J.D. and Tischler, J.Z., Nature, (2002), 415, 887890 Google Scholar
9 Margulies, L., Winther, G. and Poulsen, H.F., Science, (2001) 291, 23922394 Google Scholar
10 Chung, J.S., Ice, G.E., J. Appl. Phys., (1999) 86, 9, 52495255.Google Scholar
11 Wang, P.-C., Noyan, I. C., Kaldor, S. K., Jordan-Sweet, J. L., Liniger, E. G., and Ku, C.-H., Appl. Phys. Lett., 78, 2712 (2001).Google Scholar
12 Wang, P. C., Cargill, G. S. III, Noyan, I. C. and Hu, C. K., Appl. Phys. Lett. 72, 1296 (1998).Google Scholar
13 Tamura, N., Chung, J.-S., Ice, G.E., Larson, B.C., Budai, J.D., Tischler, J.Z., Yoon, M., Williams, E.L., and Lowe, W.P., Mater. Res. Soc. Symp. Proc., 563 (1999) 175–80.Google Scholar
14 Tamura, N., Valek, B. C., Spolenak, R., MacDowell, A. A., Celestre, R. S., Padmore, H.A., Brown, W. L., Marieb, T., Bravman, J. C., Batterman, B. W. and Patel, J. R., Mat. Res. Soc. Symp. Proc., 612 (2001) D.8.8.1–D8.8.6Google Scholar
15 Spolenak, R., Barr, D.L., Gross, M.E., Evans-Lutherodt, K., Brown, W.L., Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Patel, J.R., Valek, B.C., Bravman, J.C., Flinn, P., Marieb, T., Keller, R.R., Batterman, B.W., Mat. Res. Soc. Symp. Proc., 612 (2001) D10.3.1–D.10.3.7Google Scholar
16 Valek, B.C., Tamura, N., Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Bravman, J.C.; Batterman, B.W.; Patel, J.R., Mat. Res. Soc. Symp. Proc. 673, (2001) P7.7.1–P7.7.6Google Scholar
17 Valek, B.C., Tamura, N., Spolenak, R., Bravman, J.C., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Brown, W.L., Batterman, B.W. and Patel, J.R., Appl. Phys. Lett. 81, 41684170, (2002)Google Scholar
18 Barabash, R., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K.-S., Yang, W., Appl. Phys. Lett., 79, 749, (2001)Google Scholar
19 Barabash, R., Ice, G.E., Walker, F., J. Appl. Physics, accepted for publication in (2003)Google Scholar
20 Hughes, D. and Hansen, N., Acta Mater. 48, 29853004, (2000).Google Scholar
21 Krivoglaz, M.A., Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Plenum Press, New York, 1969 Google Scholar