Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T02:09:25.407Z Has data issue: false hasContentIssue false

Spatial Bandgap Tuning in Long Wavelength InAs Quantum Dots-in-Well Laser Structure

Published online by Cambridge University Press:  01 February 2011

Yang Wang
Affiliation:
[email protected], Lehigh University, Electrical and Computer Engineering, RM226, Sinclair Laboratory, 7 Asa Drive, Bethlehem, PA, 18015, United States, 610-758-3793
Clara E. Dimas
Affiliation:
[email protected], Lehigh University, Electrical and Computer Engineering, United States
Hery S. Djie
Affiliation:
[email protected], Lehigh University, Electrical and Computer Engineering, United States
Boon S. Ooi
Affiliation:
[email protected], Lehigh University, Electrical and Computer Engineering, United States
Gerard Dang
Affiliation:
[email protected], U. S. Army Research Laboratory, AMSRD-ARL-SE-EM, United States
Wayne Chang
Affiliation:
[email protected], U. S. Army Research Laboratory, AMSRD-ARL-SE-EM, United States
Get access

Abstract

We employed the postgrowth impurity-free vacancy diffusion technique to selectively tune the bandgap of the InAs/InGaAlAs dots-in-well laser structure grown on (100) InP substrate. A blueshift up to 170 nm with a significant decrease in the photoluminescence linewidth has been observed. Spatial control of the bandgap shifts has been achieved using SiO2 and SixNy layers as annealing caps. A differential wavelength shift of 76 nm has been observed after a rapid thermal annealing step at 750 °C for 30 s. In contrast to most reported results in other material systems using similar process, we observed a larger bandgap shift from the SixNy capped samples than from the SiO2 capped samples. Our theoretical calculation indicates that the unusual intermixing behavior in this material system is governed by different interdiffusion rates of group-III atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fafard, S., Wasilewski, Z., McCaffrey, J., Raymond, S., and Charbonneau, S., Appl. Phys. Lett. 68, 991 (1996).Google Scholar
2. Zhang, Z. H., Pickrell, G. W., Chang, K. L., Lin, H. C., Hsieh, K. C., and Cheng, K. Y., Appl. Phys. Lett. 82, 4555 (2003).Google Scholar
3. Yoon, S., Moon, Y., Lee, T.-W., Yoon, E., and Kim, Y. D., Appl. Phys. Lett. 74, 2029 (1999).Google Scholar
4. Lever, P., Tan, H. H., and Jagadish, C., J. Appl. Phys. 96, 7544 (2004).Google Scholar
5. Djie, H. S., Ooi, B. S., and Aimez, V., Appl. Phys. Lett. (in press, December 2005).Google Scholar
6. Chia, C. K., Chua, S. J., Tripathy, S., and Dong, J. R., Appl. Phys. Lett. 86, 051905 (2005).Google Scholar
7. Ooi, B. S., McIlvaney, K., Street, M. W., Helmy, A. S., Ayling, S. G., Bryce, A. C., Marsh, J. H., and Roberts, J. S., IEEE J. Quantum Electron. 33, 1784 (1997).Google Scholar
8. Gunawan, O., Djie, H. S., and Ooi, B. S., Phys. Rev. B 71, 205319 (2005).Google Scholar
9. Seki, Y., Watanabe, H., and Matsui, J., J. Appl. Phys. 49, 822 (1979).Google Scholar
10. Baird, R. J., Potter, T. J., Kothiyal, G. P. and Bhattacharya, P. K., Appl. Phys. Lett. 52, 2055 (1988).Google Scholar
11. Wang, Y., Djie, H. S., Ooi, B. S., J. Appl. Phys. 98, 073508, (2005).Google Scholar
12. Deppe, D. G., and Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).Google Scholar