Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T22:26:00.605Z Has data issue: false hasContentIssue false

Source / drain contacts in organic polymer thin film transistors

Published online by Cambridge University Press:  15 February 2011

Sandrine Martin
Affiliation:
The University of Michigan, Department of Electrical Engineering and Computer Science, Solid-State Electronics Laboratory, 1067 BIRB, 2360 Bonisteel Blvd, Ann Arbor, MI 48109-2108, USA.
Michael C. Hamilton
Affiliation:
The University of Michigan, Department of Electrical Engineering and Computer Science, Solid-State Electronics Laboratory, 1067 BIRB, 2360 Bonisteel Blvd, Ann Arbor, MI 48109-2108, USA.
Jerzy Kanicki
Affiliation:
The University of Michigan, Department of Electrical Engineering and Computer Science, Solid-State Electronics Laboratory, 1067 BIRB, 2360 Bonisteel Blvd, Ann Arbor, MI 48109-2108, USA.
Get access

Abstract

Organic polymer based thin-film transistors (OP-TFTs) look very promising for flexible organic electronics. In this paper, we describe devices based on a gate-planarized structure and using spin-coated organic polymer. We have analyzed the role of the device source and drain contacts and we present data indicating Schottky behavior of the contacts in OP-TFTs. In addition, we describe a quantitative evaluation of the source drain series resistances and extract the OP-TFT intrinsic electrical parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Horowitz, G., Advanced Materials, vol. 10 p365 (1998).Google Scholar
[2] Brown, A.R., Jarrett, C.P., Leeuw, D.D. de and Matters, M., Synthetic Metals, vol 88 p37 (1997).Google Scholar
[3] Martin, S., Nahm, J.Y. and Kanicki, J., Journal of Electronic Materials vol 31 p512 (2002).Google Scholar
[4] Sirringhaus, H., Wilson, R. J., Friend, R. H., Inbasekaran, M., Wu, W., Woo, E. P., Grell, M., and Bradley, D. D. C., Applied Physics Letters vol. 77 p406 (2000).Google Scholar
[5] Kawase, T., Newsome, C., Inoue, S., Saeki, T., Kawai, H., Kanbe, S., Shimoda, T., Sirringhaus, H., Mackenzie, D., Burns, S. and Friend, R., Proceedings of SID'02 p1017 (2002).Google Scholar
[6] Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E. P., Science, vol. 290 2123 (2000).Google Scholar
[7] Kanicki, J. and Martin, S.Hydrogenated amorphous silicon thin-film transistors” in “Thin Film Transistors”, Kagan, C.R. and Andry, P., Eds., Marcel Dekker, Inc, NY (2003).Google Scholar
[8] Street, R.A. and Salleo, A., Applied Physics Letters vol. 81 pp28872889 (2002).Google Scholar
[9] Necliudov, P.V., Shur, M.S., Gundlach, D.J. and Jackson, T.N., Solid State Electronics vol. 47 p259 (2003).Google Scholar
[10] Kanicki, J., Libsch, F.R., Griffith, J. and Polastre, R., Journal of Applied Physics vol.69 p2339 (1991).Google Scholar
[11] Luan, S. and Neudeck, G.W., Journal of Applied Physics vol. 72 p766 (1992).Google Scholar
[12] Martin, S., Hamilton, M. and Kanicki, J., Proceedings of IDRC'02 p25 (2002).Google Scholar
[13] Chen, C.-Y. and Kanicki, J.. Solid-State Electronics vol. 42 p705 (1998).Google Scholar
[14] Martin, S., Chiang, C.-S., Nahm, J.-Y., Li, T., Kanicki, J. and Ugai, Y.. Japanese Journal of Applied Physics vol. 40 p530 (2001).Google Scholar