Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T03:21:45.490Z Has data issue: false hasContentIssue false

Some Organic-Inorganic Composites, Illustrative Simulations on Elastomer Reinforcement, and an Overview of Symposium Contributions

Published online by Cambridge University Press:  21 March 2011

J. E. Mark*
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
Get access

Abstract

This review first describes organic-inorganic composites which have been prepared using techniques similar to those employed in the new sol-gel approach to ceramics. Organometallics such as silicates, titanates, and aluminates are hydrolyzed in the presence of polymer chains (for example polysiloxanes and polyamides) that typically contain hydroxyl groups. The functional groups are used to bond the polymer chains onto the silica, titania, or alumina being formed in the hydrolysis, thus forming novel organic-inorganic composites. When the polymer chains are present in excess, they constitute the continuous phase, with the ceramic-type material appearing as reinforcing particles. When present in smaller amounts, the polymer is dispersed in the continuous ceramic phase, to give a polymer-modified ceramic. Under some conditions,bicontinuous systems are obtained.

The second part addresses one of the major unsolved problems in the area of rubberlike elasticity, specifically a molecular understanding of the mechanisms by which the mechanical properties of elastomers are improved by the incorporation of particulate fillers such as carbon black or silica. Theoretical work on the reinforcement thus obtained is illustrated by some Monte Carlo calculations on one aspect of the problem, namely excluded volume effects of the filler particles on the network chain configurations. The resulting end-to-end distributions are then used in standard molecular models to generate stress-strain isotherms, which document the nature of the reinforcement obtained.

The final part provides an overview of the specific papers presented at this symposium, and attempts to place them into the broad general context of “Filled and Nanocomposite Polymer Materials”.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Warrick, E. L., Pierce, O. R., Polmanteer, K. E. and Saam, J. C., Rubber Chem. Technol., 52, 437 (1979).Google Scholar
2. Medalia, A. I. and Kraus, G., in Science and Technology of Rubber Mark, J. E., Erman, B., and Eirich, F. R., Eds. (Academic, San Diego, 1994) p. 387.Google Scholar
3. Mark, J. E., Lee, C. Y.-C. and Bianconi, P. A., Eds., Hybrid Organic-Inorganic Composites, vol. 585 (American Chemical Society, Washington, 1995).Google Scholar
4. Schmidt, H. K., Macromol. Symp., 101, 333 (1996).Google Scholar
5. Calvert, P., in Biomimetic Materials Chemistry Mann, S., Eds. (VCH Publishers, New York, 1996) p. 315.Google Scholar
6. Giannelis, E. P., in Biomimetic Materials Chemistry Mann, S., Eds. (VCH Publishers, New York, 1996) p. 337.Google Scholar
7. Wen, J. and Wilkes, G. L., in Polymeric Materials Encyclopedia: Synthesis, Properties, and Applications J. C. Salamone, Eds. (CRC Press, Boca Raton, 1996) p. 4782.Google Scholar
8. Mark, J. E., Hetero. Chem. Rev., 3, 307 (1996).Google Scholar
9. Mark, J. E., Polym. Eng. Sci., 36, 2905 (1996).Google Scholar
10. Mark, J. E., in Molecular Catenanes, Rotaxanes and Knots Sauvage, J.-P., and Dietrich-Buchecker, C., Eds. (Wiley-VCH, Weinheim, 1999) p. 223.Google Scholar
11. Mark, J. E., in Encyclopedia of Materials: Science and Technology Buschow, K. H. J.et al., Eds. (Elsevier Science, Amsterdam, 2001).Google Scholar
12. Cheetham, A. K., Brinker, C. J., Mecartney, M. L. and Sanchez, C., Eds., Better Ceramics Through Chemistry VI, vol. 346 (Materials Research Society, Pittsburgh, 1994).Google Scholar
13. Clarson, S. J. and Mark, J. E., in Siloxane Polymers Clarson, S. J., and Semlyen, J. A., Eds. (Prentice Hall, Englewood Cliffs, 1993) p. 616.Google Scholar
14. Mark, J. E., J. Appl. Polym. Sci., Appl. Polym. Symp., 50, 273 (1992).Google Scholar
15. Mark, J. E., Eisenberg, A., Graessley, W. W., Mandelkern, L., Samulski, E. T., Koenig, J. L. and Wignall, G. D., Physical Properties of Polymers (American Chemical Society, Washington, DC, 1993).Google Scholar
16. Erman, B. and Mark, J. E., Structures and Properties of Rubberlike Networks (Oxford University Press, New York, 1997).Google Scholar
17. Mark, J. E., CHEMTECH, 19, 230 (1989).Google Scholar
18. Xu, P., Wang, S. and Mark, J. E., in Better Ceramics Through Chemistry IV Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R., Eds. (Materials Research Society, Pittsburgh, 1990), vol. 180, p. 445.Google Scholar
19. Ulibarri, T. A., Beaucage, G., Schaefer, D. W., Olivier, B. J. and Assink, R. A., in Submicron Multiphase Materials Baney, R. H., Gilliom, L. R., Hirano, S.-I., and Schmidt, H. K., Eds. (Materials Research Society, Pittsburgh, PA, 1992), vol. 274, p. 85.Google Scholar
20. Breiner, J. M. and Mark, J. E., Polymer, 39, 5483 (1998).Google Scholar
21. Mark, J. E., Ning, Y.-P., Jiang, C.-Y., Tang, M.-Y. and Roth, W. C., Polymer, 26, 2069 (1985).Google Scholar
22. Landry, M. R., Coltrain, B. K., Landry, C. J. T. and O'Reilly, J. M., J. Polym. Sci., Polym. Phys. Ed., 33, 637 (1995).Google Scholar
23. McCarthy, D. W., Mark, J. E. and Schaefer, D. W., J. Polym. Sci., Polym. Phys. Ed., 36, 1167 (1998).Google Scholar
24. Breiner, J. M., Mark, J. E. and Beaucage, G., J. Polym. Sci., Polym Phys Edn., 37, 1421 (1999).Google Scholar
25. Mark, J. E., in Organic/Inorganic Hybrid Materials – 2000 Laine, R. M., Sanchez, C., Giannelis, E., and Brinker, C. J., Eds. (Materials Research Society, Warrendale, PA, 2000), vol. 628,.Google Scholar
26. Mark, J. E. and Erman, B., Rubberlike Elasticity. A Molecular Primer (Wiley-Interscience, New York, 1988).Google Scholar
27. Premachandra, J., Kumudinie, C., Mark, J. E., Tang, T. D. and Arnold, F. E., J. Macromol. Sci., Pure Appl. Chem, A36, 73 (1999).Google Scholar
28. Wang, S., Xu, P. and Mark, J. E., Rubber Chem. Technol., 64, 746 (1991).Google Scholar
29. Mark, J. E., Wang, S., Xu, P. and Wen, J., in Submicron Multiphase Materials Baney, R. H., Gilliom, L. R., Hirano, S.-I., and Schmidt, H. K., Eds. (Materials Research Society, Pittsburgh, PA, 1992), vol. 274, p. 77.Google Scholar
30. Kraus, G., Eds., Reinforcement of Elastomers (Interscience, New York, 1965).Google Scholar
31. Mark, J. E. and Sun, C.-C., Polym. Bulletin, 18, 259 (1987).Google Scholar
32. Schmidt, H. and Wolter, H., J. Non-Cryst. Solids, 121, 428 (1990).Google Scholar
33. Nass, R., Arpac, E., Glaubitt, W. and Schmidt, H., J. Non-Cryst. Solids, 121, 370 (1990).Google Scholar
34. Wang, B. and Wilkes, G. L., J. Polym. Sci., Polym. Chem. Ed., 29, 905 (1991).Google Scholar
35. Wilkes, G. L., Huang, H.-H. and Glaser, R. H., in Silicon-Based Polymer Science Zeigler, J. M., and Fearon, F. W. G., Eds. (American Chemical Society, Washington, DC, 1990), vol. 224, p. 207.Google Scholar
36. Brennan, A. B., Wang, B., Rodrigues, D. E. and Wilkes, G. L., J. Inorg. Organomet. Polym., 1, 167 (1991).Google Scholar
37. Sobon, C. A., Bowen, H. K., Broad, A. and Calvert, P. D., J. Mat. Sci. Lett., 6, 901 (1987).Google Scholar
38. Calvert, P. and Mann, S., J. Mat. Sci., 23, 3801 (1988).Google Scholar
39. Azoz, A., Calvert, P. D., Kadim, M., McCaffery, A. J. and Seddon, K. R., Nature, 344, 49 (1990).Google Scholar
40. Doyle, W. F. and Uhlmann, D. R., in Ultrastructure Processing of Advanced Ceramics Mackenzie, J. D., and Ulrich, D. R., Eds. (Wiley-Interscience, New York, 1988) p. 795.Google Scholar
41. Doyle, W. F., Fabes, B. D., Root, J. C., Simmons, K. D., Chiang, Y. M. and Uhlmann, D. R., in Ultrastructure Processing of Advanced Ceramics Mackenzie, J. D., and Ulrich, D. R., Eds. (Wiley-Interscience, New York, 1988) p. 953.Google Scholar
42. Boulton, J. M., Fox, H. H., Neilson, G. F. and Uhlmann, D. R., in Better Ceramics Through Chemistry IV Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R., Eds. (Materials Research Society, Pittsburgh, 1990), vol. 180, p. 773.Google Scholar
43. Ning, Y. P., Zhao, M. X. and Mark, J. E., in Frontiers of Polymer Research Prasad, P. N., and Nigam, J. K., Eds. (Plenum, New York, 1991) p. 479.Google Scholar
44. Zhao, M. X., Ning, Y. P. and Mark, J. E., in Advanced Composite Materials Sacks, M. D., Eds. (American Ceramics Society, Westerville, OH, 1993) p. 891.Google Scholar
45. Novak, B. M., Adv. Mats., 5, 422 (1993).Google Scholar
46. Uhlmann, D. R. and Ulrich, D. R., Eds., Ultrastructure Processing of Advanced Materials (Wiley, New York, 1992).Google Scholar
47. Wen, J. and Mark, J. E., Polym. J., 27, 492 (1995).Google Scholar
48. Kloczkowski, A., Sharaf, M. A. and Mark, J. E., Comput. Polym. Sci., 3, 39 (1993).Google Scholar
49. Kloczkowski, A., Sharaf, M. A. and Mark, J. E., Chem. Eng. Sci., 49, 2889 (1994).Google Scholar
50. Sharaf, M. A., Kloczkowski, A. and Mark, J. E., Comput. Polym. Sci., 4, 29 (1994).Google Scholar
51. Yuan, Q. W., Kloczkowski, A., Mark, J. E. and Sharaf, M. A., J. Polym. Sci., Polym. Phys. Ed., 34, 1674 (1996).Google Scholar
52. Mark, J. E. and Curro, J. G., J. Chem. Phys., 79, 5705 (1983).Google Scholar
53. Treloar, L. R. G., The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1975).Google Scholar
54. Sunkara, H. B., Jethmalani, J. M. and Ford, W. T., Chem. Mater., 6, 362 (1994).Google Scholar
55. Sunkara, H. B., Jethmalani, J. M. and Ford, W. T., in Hybrid Organic-Inorganic Composites Mark, J. E., Lee, C. Y.-C., and Bianconi, P. A., Eds. (American Chemical Society, Washington, 1995), vol. 585, p. 181.Google Scholar