Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:01:54.886Z Has data issue: false hasContentIssue false

Solubility and Electrical Response of Single Walled Carbon Nanotubes with Thiolate Mediated Gold Nanoparticle Attachment

Published online by Cambridge University Press:  01 February 2011

Charles P. Daghlian
Affiliation:
Rippel Electron Microscope Facility, Dartmouth College, Hanover NH 03755, U.S.A.
Ursula J. Gibson
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, U.S.A.
Get access

Abstract

Dodecanethiol-stabilized-Au nanoparticles are successfully attached to the sidewall of as-grown single walled carbon nanotubes (SWCNTs) via a simple approach. This provides a straightforward method to functionalize and dissolve SWCNTs of full length in organic solvents. The modified nanotubes exhibit dramatic increase in tube resistance and strong gate dependence with a memory effect, which is explained in terms of nanotube structure deformation induced by surface thiolation. The mechanism for Au particle attachment is shown to be via dodecanethiol groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dekker, C., Physics Today 52, 22 (1999).Google Scholar
2. Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature 393, 49 (1998).Google Scholar
3. Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., Nano Letters 1, 453 (2001).Google Scholar
4. Liu, X. L., Lee, C., Zhou, C. W., and Han, J., Appl. Phys. Lett. 79, 3329 (2001).Google Scholar
5. Cui, J. B., Sordan, R., Burghard, M., and Kern, K., Appl. Phys. Lett. 81, 3260 (2002).Google Scholar
6. Postma, H. W. C., Teepen, T., Yao, Z., Grifoni, M., and Dekker, C., Science 293, 76 (2001).Google Scholar
7. Cui, J. B., Burghard, M., and Kern, K., Nano Lett. 2, 117 (2002).Google Scholar
8. Riggs, J. E., Walker, D. B., Carroll, D. L., and Sun, Y. P., J. Phys. Chem. B 104, 7071 (2000).Google Scholar
9. Chen, J., Rao, A.M., Lyuksyutov, S., Itkis, M.E., Hamon, M.A., Haddon, R.C., J. Phys. Chem. B 105, 2525 (2001).Google Scholar
10. Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E., Haddon, R.C., Acc. Chem. Res. 35, 1105 (2002).Google Scholar
11. Bahr, J. L. and Tour, J. M., J. Mater. Chem. 41, 1853 (2002).Google Scholar
12. Iijima, S., Nature 354, 56 (1991).Google Scholar
13. Hostetler, M. J., Wingate, J. E., Zhong, C. J., Harris, J. E., Vachet, R. W., Clark, M. R., Londono, J. D., Green, S. J., Stokes, J. J., Wignall, G. D., Glish, G. L., Porter, M. D., Evans, N. D., and Murray, R. W., Langmuir 14, 17 (1998).Google Scholar
14. Mixteco-Sanchez, J. C., Guirado-Lopez, R. A., Phys. Rev. A 68, 3204 (2003).Google Scholar
15. Cui, J. B., Daghlian, C. P., and Ursula, U. J., Submitted.Google Scholar
16. Yao, Z., Postma, H. W. Ch., Balents, L., and Dekker, C., Nature (London) 402, 273 (1998).Google Scholar
17. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar