Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:12:06.775Z Has data issue: false hasContentIssue false

Solubility and Dispersion Characteristics of Polyaniline

Published online by Cambridge University Press:  16 February 2011

L. W. Shacklette
Affiliation:
AlliedSignal Inc., Research & Technology P.O. Box 1021, Morristown, NJ 07962–1021
C. C. Han
Affiliation:
AlliedSignal Inc., Research & Technology P.O. Box 1021, Morristown, NJ 07962–1021
Get access

Abstract

We have demonstrated that the solubility characteristics of undoped polyaniline can be understood from the point of view of standard solubility parameters which measure the propensity for the polymer and the solvent to engage in dispersive, polar, and hydrogen bonding interactions. By empirical measures and group additive calculations, emeraldine base has been shown to be characterized by solvent interaction parameters: δd = 17.4 MPa1/2, δp = 8.1 MPa1/2, and δh = 10.7 MPa1/2, which together are equivalent to a total solubility parameter: δ = 22.2 MPa1/2. In the case of doped polyanilines, the solubility parameters can influence or even dominate the interactions of the doped polymer. Without the modifying influence of the dopant anion, the doped polyaniline compositions are more strongly polar and hydrogen bonding than the undoped polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angelopoulos, M., Asturias, G.E., Ermer, S.P., Ray, A., Scherr, E.M., MacDiarmid, A.G., Achtar, M., Kiss, Z., and Epstein, A.J., Mol. Cryst. Liq. Cryst. 160, 151 (1988).Google Scholar
2. Cao, Y., Smith, P., and Heeger, A.J., Synth. Met. 48, 91 (1992).Google Scholar
3. Kulkami, V.G., Campbell, J.C., and Mathew, W.R., Synth. Met. 57, 3780 (1993).Google Scholar
4. Shacklette, L.W., Han, C.C., Luly, M.H., Synth. Met. 52, 3532 (1993).CrossRefGoogle Scholar
5. Shacklette, L.W. and Baughman, R.H., Mol. Cryst. Liq. Cryst. 189, 193 (1990).Google Scholar
6. Shacklette, L.W., Wolf, J.F., Gould, S., and Baughman, R.H., J. Chem. Phys. 88, 3955 (1988).Google Scholar
7. Asturias, G.E., MacDiarmid, A.G., McCall, R.P., and Epstein, A.J., Synth. Met. 29, E157 (1989).CrossRefGoogle Scholar
8. Javadi, H.H.S., Angelopoulos, M., MacDiarmid, A.G., and Epstein, A.J., Synth. Met. 26, 1 (1988).Google Scholar
9. Focke, W.W. and Wnek, G.E., J. Electroanal. Chem. 256, 343 (1988).Google Scholar
10. Alix, A., Lemoine, V., Nechtschein, M., Travers, J.P. and Menardo, C., Synth. Met. 29, E457 (1989).Google Scholar
11. Timofeeva, O., Lubentsov, B., Sudakova, Ye., Chernyshov, D., and Khidekel', M., Synth. Met. 40, 111 (1991).Google Scholar
12. Lubentsov, B., Timofeeva, O., Saratovskikh, S., Krinichnyi, V., Pelkh, A., Dmitrenko, V., and Khidekel', M., Synth. Met. 47, 187 (1992).Google Scholar
13. Okabayashi, K., Goto, F., Abe, K., and Yoshida, T., J. Electrochem. Soc. 136, 1986 (1989).Google Scholar
14. Barton, A.F.M., Handbook of Solubility Parameters and Other Cohesion Parameters. 2nd. ed. (CRC Press, Boca Raton, 1991).Google Scholar
15. Guiseppi-Elie, A., Wnek, G.E., and Wesson, S.P., Langmuir, 2, 508 (1986).Google Scholar
16. Wessling, B., Synth. Met. 41–43. 907 (1991).Google Scholar
17. Koenhen, D.M. and Smolders, C.A., J. Appl. Polym. Sci., 19, 1163 (1975).Google Scholar
18. Beerbower, A., J. Colloid Interfac. Sci., 35, 126 (1971).Google Scholar
19. Wu, S., J. Phys. Chem. 72, 3332 (1968).CrossRefGoogle Scholar
20. Holmes, C.F., J. Am. Chem. Soc. 95, 1014 (1973).Google Scholar
21. Zuo, F., Angelopoulos, M., MacDiarmid, A.G., and Epstein, A.J., Phys Rev B 39, 3570 (1989).CrossRefGoogle Scholar
22. Javadi, H.H.S., Cromack, C.R., Angelopoulos, M., MacDiarmid, A.G., and Epstein, A.J., Phys Rev B 39, 3579 (1989).Google Scholar