Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-03T00:23:04.887Z Has data issue: false hasContentIssue false

Sol-Gel Synthesis And Characterization Of Molybdenum Oxide/Polypyrrole Hybrids

Published online by Cambridge University Press:  10 February 2011

W. Dong
Affiliation:
MSE Department, University of California, Los Angeles, CA 90095
B. Dunn
Affiliation:
MSE Department, University of California, Los Angeles, CA 90095
Get access

Abstract

Monolithic Mo oxide/polypyrrole hybrid aerogels and xerogels were successfully synthesized through sol-gel methods. The PPy formed appears to be β-substituted. A 100 fold increase in electrical conductivity was observed for the hybrids (4× 10–3 S/cm) as compared to the pristine MoO3 gels (2× 10–5 S/cm). An initial increase in Li+ intercalation capacity is also observed for the hybrid. The electrical conductivity and Li+ intercalation depend greatly on the concentration of Motrichloro alkoxide precursor and sol aging conditions. The hybrid aerogels have a density of 0.5 g/cc and a surface area of 120 m2/g. The as-formed gels are amorphous and crystallize to the orthorhombic MoO3 phase at 375°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Turcu, R., Neamtu, C., and Brie, M. in Conducting Polymers: Transport Phenomena, edited by J., Przyluski and S., Roth (Materials Science Forum 122, Warsaw 1993), p. 83.Google Scholar
2. Kaneko, M. and Wohrle, D., Adv. Polym. Sci. 84, p. 141 (1988).10.1007/BFb0025906Google Scholar
3. Nazri, G. A., Julien, C., Solid State lonics 68, p. 111 (1994).Google Scholar
4. Belanger, D., Laperriere, G., and Gravel, L., J. Electrochem. Soc. 137, p. 365 (1990).10.1149/1.2086432Google Scholar
5. Lavallee, S., Laperriere, G., Belanger, D., J. Electroanalytical Chem. 431, p. 219 (1997).10.1016/S0022-0728(97)00166-6Google Scholar
6. Belanger, D., Laperriere, G., Girard, F., Guay, D., and Tourillon, G., Chem. Mater. 5, p. 861 (1993).10.1021/cm00030a024Google Scholar
7. Garcia, B., Roy, F., and Belanger, D., J. Electrochem. Soc. 146, p. 226 (1999).10.1149/1.1391591Google Scholar
8. Kerr, T. A., Wu, H., and Nazar, L. F., Chem. Mater. 8, p. 2005 (1996).10.1021/cm960071qGoogle Scholar
9. Kerr, T. A., Leroux, F., and Nazar, L. F. in Materials for Electrochemical Energy Storage and Conversion II - Batteries, Capacitors and Fuel Cells, edited by Ginley, D. S., Doughty, D. H., Scrosati, B., Takamura, T., and others (Mater. Res. Soc. Proc., Boston, MA 1997), p. 499.Google Scholar
10. Dong, W., Dunn, B., J. Non-Cryst. Solids 225, p. 135 (1998).10.1016/S0022-3093(98)00018-0Google Scholar
11. Chaput, F., Dunn, B., Fuqua, P., Salloux, K., J. Non-Cryst. Solids 188, p. 11 (1995).10.1016/0022-3093(95)00026-7Google Scholar
12. Allen, N. S., Murray, K. S., Fleming, R. J., and Saunders, B. R., Synth. Metals 87, p. 237 (1997).10.1016/S0379-6779(97)80115-4Google Scholar
13. Cheah, K., Forsyth, M., and Truong, V. T., Synth. Metals 94, p. 215 (1998).10.1016/S0379-6779(98)00006-XGoogle Scholar
14. Tian, B. and Zerbi, G., J. Chem. Phys. 92, p. 3886 (1990).10.1063/1.457794Google Scholar
15. Tian, B. and Zerbi, G., J. Chem. Phys. 92, p. 3892 (1990).10.1063/1.457795Google Scholar
16. Skotheim, T. A., editor. Handbook of Conducting Polymers, M. Dekker, New York, 1986, pp. 265291.Google Scholar
17. Kanazawa, K. K., Diaz, A. F., Krounbi, M. T., and Street, G. B., Syn. Metals 4, p. 119 (1981).10.1016/0379-6779(81)90027-8Google Scholar