Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T15:58:41.086Z Has data issue: false hasContentIssue false

Sol-Gel Preparation, Characterization and Photocatalytic Activity of Nanostructured TiO2 Nanoparticles

Published online by Cambridge University Press:  31 January 2012

R. Carrera*
Affiliation:
Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, 07738 D.F. México
S. Castillo
Affiliation:
Programa de Ingeniería Molecular, Instituto Mexicano del Petróleo, 07738 D.F., México
Get access

Abstract

To establish a promising method for the purification of air containing volatile organic compounds, TiO2 nanoparticles with interesting physicochemical properties were prepared by the sol-gel method to perform the photocatalytic decomposition of acetaldehyde. The obtained samples were characterized by the x-ray diffraction -Rietveld refinement, transmission electron microscopy (TEM) and the Brunauer, Emmet and Teller (BET) model. According to the results, the sample that presented the highest activity (96.4%) in the photocatalytic oxidation of acetaldehyde was the one annealed at 200 °C. This material showed the presence of a mixture of the anatase (higher proportion) and brookite phases, nanometric crystal size (7.03 nm) and high surface area (189 m2g-1). The physicochemical properties present in the TiO2-P-200°C nanoparticles suggest that they may establish a photoassisted reaction process for air purification, in which volatile organic compounds are photocatalitically decomposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamashita, H., Takeuchi, M., and Anpo, M. in Encyclopedia of n anoscience and n anotechnology edited. by Nalwa, H. S., American Scientific Publishers, CA USA, 2004, p.p. 639665.Google Scholar
2. Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D., and Anpo, M., J. Catal. 246, 235 (2007).Google Scholar
3. Obuchi, E., Sakamoto, T., and Nakano, K., Chem. Eng. Sci. 54, 1525 (1999).Google Scholar
4. Carrera, R., Vázquez, A. L., Arce, E., Moran-Pineda, M., and Castillo, S., J. Alloys Compounds 434-435, 788 (2007).Google Scholar
5. Gómez, R., López, T., Ortiz-Islas, E., Navarrete, J., Sánchez, E., Tzompanztzi, F., and Bokhimi, X., J. Mol. Catal. A: Chem. 193, 217 (2003).Google Scholar
6. Venkatachalam, N., Palanichamy, M., and Murugesan, V., Mater. Chem. Phys. 104, 454 (2007).Google Scholar
7. Mahdjoub, N., Allen, N., Kelly, P., Vishnyakov, V., Photochem, J.. Photobiol. A210, 125 (2010).Google Scholar
8. , Rodríguez-Carbajal J.Phys. B 192, 55 (1993).Google Scholar
9. Orlhac, X., Fillet, C., Deniard, P., Dulac, A. M., and Brec, R., Appl. Cryst. 34, 114 (2001).Google Scholar
10. Fuentes, L., Análisis de minerales y el método de Rietveld, 1st ed. (Sociedad Mexicana de Cristalografía, Cd. de México, 1998) p. 78.Google Scholar
11. Reid, J. W., and Hendry, J. A., Appl. Cryst. 39, 536 (2006).Google Scholar
12. Castillo, S., Morán-Pineda, M., Molina, V., Gómez, R., and López, T., Appl. Catal. Environ. B15, 203 (1998).Google Scholar
13. Nádia, R. C., Machado, F., and Santana, V. S., Catal. Today 107-108, 595 (2005).Google Scholar
14. Reddy, K. M., Gopal Reddy, C. V., and Manorama, C. V., J. Solid State Chem. 158, 180 (2001).Google Scholar
15. Tang, Z., Zhang, J., Cheng, Z., and Zhang, Z., Mater Chem. Phys. 77, 314 (2002).Google Scholar
16. Bokhimi, A., Morales, A., Novaro, A., O., López, T., Sánchez, E., Gómez, R., J. Mater. Res. 10, 2788 (1995).Google Scholar
17. Zhang, H. Z., and Banfield, J. F.: J. Phys. Chem. B 104, 3481 (2000).Google Scholar
18. Patil, A. J., Shinde, M. H., Potdar, H. S., Deshpande, S. B., Sainkar, S. R., Mayadevi, S., and Date, S. K., Mater. Chem. Phys. 68, 7 (2001).Google Scholar
19. Wang, J. A., Lima-Ballesteros, R., López, T., Moreno, A., Gómez, R., Novaro, O., and Bokhimi, X., J. Phys. Chem. B105, 9692 (2001).Google Scholar
20. Antonelli, D. M., and Ying, J. Y., Angew. Chem. Int. Ed. Engl. 34, 2014 (1995).Google Scholar
21. Ying, J. Y., AIChE J 46, 1902 (2000).Google Scholar