Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:37:57.048Z Has data issue: false hasContentIssue false

Slip at Molten Polymer-Polymer Interfaces

Published online by Cambridge University Press:  01 February 2011

Rui Zhao
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Av. S.E. Minneapolis, MN55455, USA
Christopher W. Macosko
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Av. S.E. Minneapolis, MN55455, USA
Get access

Abstract

A number of researchers have reported an anomalous lowering of viscosity in immiscible polymer blends. Slip at the interfaces between the polymers has been proposed to explain these observations. Because of the complex morphology developed in melt blends it is difficult to test the slip hypothesis. However, using layer multiplication dies in coextrusion, two or more polymers can be alternatively combined into hundreds or even thousands of continuous layers generating a large amount of well-defined interfacial area. Polypropylene (PP) and polystyrene (PS) with closely matched viscosity were blended in a twin screw extruder and also coextruded into 2, 32, 128 alternating layers. The steady shear and dynamic shear viscosity of the blends was measured in a capillary rheometer and a rotational shear rheometer using parallel plates geometry. While the steady shear viscosity of the blends was lower than that of both homopolymers, the dynamic shear viscosity of the blends was the same as that of the homopolymers. The pressure drop of the coextruded multilayer melts through a slit die was lower than that of both homopolymers and decreased with an increase in the number of layers. From these results interfacial slip viscosity and velocity were estimated. Addition of diblock copolymer was able to suppress interfacial slip.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Utracki, L. A. and Kamal, M. R., Polym Eng Sci, 22, 96 (1982).Google Scholar
2. Utracki, L. A., Polym Eng Sci, 23, 602 (1983).Google Scholar
3. Shih, C. K., Polym Eng Sci, 16, 742 (1976).Google Scholar
4. Kapuscinski, M. and Schreiber, H. P., Polym Eng Sci, 19, 900 (1979).Google Scholar
5. Danesi, S. and Porter, R. S., Polymer, 19, 448 (1978).Google Scholar
6. Alle, N. and Lyngaae–Jorgensen, J., Rheolog Acta, 19, 94 (1980).Google Scholar
7. Han, C. D. and Yu, T. C., J Appl Polym Sci, 15, 1163 (1971).Google Scholar
8. Liptov, Y. S., Shumsky, V. F., Gorbatenko, A. N., Panov, Y. N. and Bolotnikova, L. S., J of Appl Polym Sci, 26, 499 (1981).Google Scholar
9. Han, C. D. and Yu, T. C., Polym Eng Sci, 12, 81 (1972).Google Scholar
10. Carley, J. G., Preprints SPE Reg Conf on Plast Progr Proc, 285 (1980).Google Scholar
11. Brandrup, J. and Immergut, E. H., Polymer Handbook, 3rd, ed. Brandrup, J. and Immergut, E. H. (1989).Google Scholar
12. Helfand, E. and Tagami, Y., J Chem Phys, 56, 3592 (1972).Google Scholar
13. Wu, S., Polymer Interface and Adhesion, 126 (1982).Google Scholar
14. Lin, C. C., Polym J, 11 185, 1979.Google Scholar
15. Lyngaae–Jorgensen, J., Thomsen, L. D., Rasmussen, K., Sondergaard, K. and Andersen, F. E., Intern Polym Processing, 2, 123 (1988).Google Scholar
16. Cohen, A. and Schroeder, R., J Rheology, 34, 685 (1990).Google Scholar
17. Zhao, J., Mascia, L. and Nassehi, V., Advance in Polym Technology, 16, 209 (1997).Google Scholar
18. Bousmina, M., Palierne, J. F. and Utracki, L. A., Polym Eng Sci, 39, 1049 (1999).Google Scholar
19. Rudin, A., Worm, A. T. and Blacklock, J. E., J Plast Film Sheet, 1, 3 (1985).Google Scholar
20. Nam, S., Intern Polym Processing, 1, 98 (1987).Google Scholar
21. Valenza, A. and La Mantia, F. P., Intern Polym Processing, 2, 3 (1988).Google Scholar
22. Chan, C. M. and Feng, J., J Rheol, 41, 319 (1997).Google Scholar
23. Furakawa, H., Phys Rev, A40, 6403 (1989).Google Scholar
24. Brochard, F., de Gennes, P. G. and Troian, S., C R Acad Sc (Paris), II310, 1169 (1990).Google Scholar
25. de Gennes, P. G., Mecanical Properties of Polymer Interfaces; ed. Sarchez, I. C. (Butterworth-Heinemann, 1992), pp. 5571.Google Scholar
26. de Gennes, P. G., C R Acad Sc (Paris), B288, 219 (1979).Google Scholar
27. Goveas, J. L. and Fredrickson, P. G., European Physical Journal, B2, 79 (1998).Google Scholar
28. Wu, S., Polym Eng and Sci, 27, 335 (1987).Google Scholar
29. Macosko, C. W., SPE ANTEC, 2, 2548 (1998).Google Scholar
30. Miroshnikov, Y. P. and Andreeva, E. N., Vysokomol Soedin, A29, 579 (1987).Google Scholar
31. Sluijters, Ing. R., Chemische Techniek, 3, 33 (1965).Google Scholar
32. Schrenk, W. J. and Alfrey, T., Polym Eng Sci, 9, 393 (1969).Google Scholar
33. Schrenk, W. J. and Alfrey, T., Polymer Blends, ed. Paul, D. R. and Newman, S. (Academic Press, 1978), 2, pp. 129165.Google Scholar
34. Saito, T. and Macosko, C. W., SPE ANTEC, 1, 967 (1998).Google Scholar
35. Weimann, P. A., Jones, T. D., Hillmyer, M. A., Bates, F. S., Londono, J. D., Melnichenko, Y., Wignall, G. D. and Almdal, K., Macromolecules, 30, 3650 (1997).Google Scholar
36. Palierne, J. F., Rheolog Acta, 29, 204 (1990).Google Scholar
37. Graebling, D., Muller, R. and Palierne, J. F., Macromolecules, 26, 320 (1993).Google Scholar
38. Riemann, R. E., Cantow, H. J. and Friedrich, C., Macromolecules, 30, 5476 (1997)Google Scholar
39. Lacroix, C., Grmela, M. and Carreau, P. J., J Rheology, 42, 41 (1998).Google Scholar