Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T03:05:45.816Z Has data issue: false hasContentIssue false

Sliding-induced non-equilibrium in confined systems

Published online by Cambridge University Press:  01 February 2011

Martin H. Müser*
Affiliation:
Department of Applied Mathematics, University of Western Ontario London, Ontario Canada N5Y 2W5
Get access

Abstract

When two solids are in relative sliding motion, the intervening layer separating the two surfaces (for example the boundary lubricant) is typically far from thermal equilibrium. With the help of a generic model reflecting the boundary lubricant, it will be shown that it is often not possible to characterize a sliding contact by means of a single effective temperature. The reason is that the probability distribution (PD) of microscopic variables differs in a characteristic fashion from equilibrium PDs. Non-equilibrium velocity PDs are not Gaussian but tend to be exponential, thus favoring rare events. Leaving dynamic equilibrium by non-uniform sliding conditions leads to yet additional effects, in particular to enhanced dissipation. This is shown in a model describing rubbing polymer brushes in good solvent conditions. Shortly after returning the sliding velocity, the brush interdigitation is distinctly larger than during steady-state sliding. Based on this observation, predictions can be made at what amplitude the loss is maximum for a given driving frequency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Here, ‘energy dissipation’ refers to a process in which potential energy gets suddenly (i.e. in less than a nanosecond) converted into kinetic energy, which will then be converted into random motion and ultimately flow away from the interface as thermal heat.Google Scholar
2. Müser, M. H., Urbakh, M., and Robbins, M. O., Adv. Chem. Phys. 126, 187 (2003) and references therein.Google Scholar
3. Bowden, F. P. and Tabor, D., The Friction and Lubrication of Solids, (Clarendon Press, Oxford, 1986).Google Scholar
4. Gee, M. L., McGuiggan, P. M., Israelachvili, J. N. and Homola, A. M., J. Chem. Phys. 93 1895 (1990).Google Scholar
5. Granick, S., Science 253, 1374 (1992).Google Scholar
6. He, G., Müser, M. H., and Robbins, M. O., Science 284, 1650 (1999).Google Scholar
7. Müser, M. H., Wenning, L., and Robbins, M. O., Phys. Rev. Lett. 86, 1295 (2001).Google Scholar
8. Granick, S., Demirel, A. L., Cai, L. L., and Peanasky, J., Israel J. Chem. 35, 75 (1995).Google Scholar
9. Cai, L. L., Peanasky, J., and Granick, S., Trends Polym. Sci. 4, 47 (1996).Google Scholar
10. Luengo, G., Schmidt, F.-J., Hill, R., and Israelachvili, J., Macromolecules 30, 2482 (1997).Google Scholar
11. Zaloj, V., Urbakh, M., and Klafter, J., Phys. Rev. Lett. 81, 1227 (1998).Google Scholar
12. Aichele, M. and Müser, M. H., Phys. Rev. E 68 016125:1–14 (2003).Google Scholar
13. Müser, M. H., Phys. Rev. Lett. 89, 224301:1–4 (2002)Google Scholar
14. Daly, C., Zhang, J., and Sokoloff, J. B., Phys. Rev. Lett. 90, 246101 (2003).Google Scholar
15. He, G. and Robbins, M. O., Tribol. Lett. 10, 7 (2001).Google Scholar
16. Sang, Y., Dube, M., and Grant, M., Phys. Rev. Lett., 87, 174301 (2001).Google Scholar
17. Dudko, O. K., Filippov, A. E., Klafter, J., and Urbakh, M., Chem. Phys. Lett. 352, 499 (2002).Google Scholar
18. Varnik, F., personal communication.Google Scholar
19. Kreer, T., Müser, M. H., Binder, K., and Klein, J., Langmuir 17, 7804 (2001).Google Scholar
20. Kreer, T., Binder, K., and Müser, M. H., Langmuir 19, 7551 (2003).Google Scholar
21. Kreer, T. and Müser, M. H., Wear 254, 827 (2003).Google Scholar
22. Grest, G.S., in Advances in Polymer Science 138, p. 149, ed. Granick, S. (Springer, Berlin, 1999);Google Scholar
Grest, G. S. and Murat, M., in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, p. 476, ed. Binder, K. (Oxford University Press, New York, 1995).Google Scholar
23. Klein, J. et al, Nature 370, 634 (1994).Google Scholar
24. Tadmor, R., Janik, J., Klein, J., and Fetters, L. J. Phys. Rev. Lett. 91, 115503 (2003).Google Scholar