Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:19:05.624Z Has data issue: false hasContentIssue false

Size dependent optical properties in ZnO nanosheets

Published online by Cambridge University Press:  19 November 2013

Brahim El Filali
Affiliation:
UPIITA-Instituto Politécnico Nacional, México D.F.07738, México.
Aaron I. Díaz Cano
Affiliation:
UPIITA-Instituto Politécnico Nacional, México D.F.07738, México.
Get access

Abstract

Photoluminescence (PL), scanning electronic microscopy (SEM) and Raman scattering have been studied in crystalline ZnO nanosheets with different sizes after the thermal annealing at 400 °C for 2 hours in ambient air. ZnO nanosheets were created by the electrochemical (anodization) method using the variation of the etching durations with obtained ZnO nanosheet sizes from the range 40-360 nm. Earlier it was shown using the X ray diffraction (XRD) method that thermal annealing performed the ZnO oxidation and crystallization with the creation of the wurtzite crystal lattice. Four PL bands are revealed in PL spectra with the PL peaks at 1.60, 2.08, 2.50 and 3.10 eV. Size decreasing of ZnO nanosheets stimulates tremendous changes of ZnO optical parameters. It is shown that decreasing the ZnO nanosheet sizes is accompanied by the intensity increase of a set of Raman peaks and the surface defect related PL bands. The reasons of emission transformation and the nature of optical transitions have been discussed as well.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Torchynska, T.V., “Nanocrystals and quantum dots. Some physical aspects” in the book “Nanocrystals and quantum dots of group IV semiconductors”, Editors: T. V. Torchynska and Yu. Vorobiev, American Scientific Publisher, 1-42 (2010).Google Scholar
Li, P.G., Tanga, W.H., Wang, X., J. of Alloys and Compounds, 479, 634–637 (2009).Google Scholar
Torchynska, T.V., Palacios Gomez, J., Polupan, G.P., Becerril Espinoza, F.G., Garcia Borquez, A., Korsunskaya, N.E., Khomenkova, L.Yu., Appl. Surf. Science, 167, 197–204 (2000).Google Scholar
Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Prog. Mater. Sci., 50, 293 (2005).CrossRefGoogle Scholar
Alvi, N.H., Usman Ali, S.M., Hussain, S., Nur, O. and Willander, M., Scripta Materialia 64, 697–700 (2011).CrossRefGoogle Scholar
Huang, M.H., Mao, S., Feick, H., Science, 292, 1897 (2001).CrossRefGoogle Scholar
Li, Y.B., Bando, Y., Golberg, D., Appl. Phys. Lett. 84, 3603 (2004).Google Scholar
Park, W.I., Kim, J.S., Yi, G.C., Bae, M.H., Lee, H.J., Appl. Phys. Lett. 85, 5052 (2004).Google Scholar
Reshchikov, M. A., Morkoc, H., Nemeth, B., Nause, J., Xie, J., Hertog, B., Osinsky, A., Physica, B. Condensed Matter 401–402, 358–361 (2007).CrossRefGoogle Scholar
Torchynska, T. V., Douda, J., Ostapenko, S. S., Jimenez-Sandoval, S., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., J. of Non-Crystal. Solid. 354, 2885 (2008).Google Scholar
Torchynska, T. V., Diaz Cano, A. I., Dybic, M., Ostapenko, S., Morales Rodrigez, M., Jimenes Sandoval, S., Vorobiev, Y., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., phys. stat. sol. (c), 4, 241 (2007).CrossRefGoogle Scholar
Dybic, M., Ostapenko, S., Torchynska, T.V., Velazquez Lozada, E., Appl. Phys. Lett. 84(25), 5165–5167 (2004).Google Scholar
Torchynska, T. V., Diaz Cano, A.I., Dybic, M., Ostapenko, S., Mynbaeva, M., Physica, B, Condensed Matter, 376-377, 367–369 (2006) Google Scholar
Diaz Cano, A.I., El Filali, B., Torchynska, T.V., Casas Espinola, J.L., J. of Phys.. and Chem.. of Solids, 74, 431–435, (2013).Google Scholar
Ashkenov, N., Mbenkum, B. N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E. M., Kasic, A., Schubert, M., Grundmann, M., Wagner, G., Neumann, H., Darakchieva, V., Arwin, H., and Monemar, B., J. Appl.Phys. 93, 126 (2003).Google Scholar
Scott, J.F., Phys. Rev. B, 2, 1209 (1970).CrossRefGoogle Scholar
Ghoopum, S., Hongsith, N., Mangkorntong, P., Physica E, 39, 53–56 (2007) Google Scholar
Polupan, G., Torchynska, T.V., Thin Solid Films 518, S208–S211 (2010).Google Scholar
Gil, B., V, Al.. Kavokin Appl. Phys. Let. 81, n. 4, (2002) Google Scholar
Diaz Cano, A.I., El Filali, B., Torchynska, T.V., J. L.Casas Espinola, Physica E, 51, 24–28 (2013).Google Scholar
Djuris, A. B., Ng, A.M.C., Chen, X.Y.. Progress in Quantum Electronics 34. 191–259 (2010).Google Scholar
Voss, T., Bekeny, C., Wischmeier, L., Gafsi, H., Borner, S., Schade, W., Mofor, A.C., Bakin, A., Waag, A., Appl. Phys. Lett. 89, 182107 (2006).Google Scholar
Patra, M.K., Manzoor, K., Manoth, M., Vadera, S.P., Kumar, N., Lumin, J.. 128(2) 267–272 (2008).Google Scholar
Garces, N.Y., Wang, L., Bai, L., Giles, N.C., Halliburton, L.E., Cantwell, G., Appl. Phys. Lett. 81(4) 622–624 (2002).Google Scholar
Djurišic, A.B., Choy, W.C.H., Roy, V.A.L., Leung, Y.H., Kwong, C.Y.. Cheah, K.W., Gundu Rao, T.K., Chan, W.K., Lui, H.F., Surya, C., Adv. Funct. Mater. 14, 856–864 (2004).Google Scholar
Madelung, O., “Semiconductors-Basic Data”, Springer (1996) 336p.CrossRefGoogle Scholar
Torchinskaya, T.V., Korsunskaya, N.E., Dzumaev, B., Bulakh, B.M., Smiyan, O.D., Kapitanchuk, A.L., Antonov, S.O., Semiconductors, 30, 792–796 (1996).Google Scholar