Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T08:05:44.584Z Has data issue: false hasContentIssue false

Size Also Matters in Biodegradable Composite Microfiber Reinforced by Chitosan Nanofibers

Published online by Cambridge University Press:  22 January 2014

Elisabete D. Pinho
Affiliation:
3B’s Research Group – Biomaterials, Biodegradables and Biomimetics. Department of Polymer Engineering, University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine. AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal. ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Albino Martins
Affiliation:
3B’s Research Group – Biomaterials, Biodegradables and Biomimetics. Department of Polymer Engineering, University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine. AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal. ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
José V. Araújo
Affiliation:
3B’s Research Group – Biomaterials, Biodegradables and Biomimetics. Department of Polymer Engineering, University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine. AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal. ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Rui L. Reis
Affiliation:
3B’s Research Group – Biomaterials, Biodegradables and Biomimetics. Department of Polymer Engineering, University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine. AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal. ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Nuno M. Neves
Affiliation:
3B’s Research Group – Biomaterials, Biodegradables and Biomimetics. Department of Polymer Engineering, University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine. AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal. ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Get access

Abstract

Pioneer works on nanocomposites were focused in carbon nanofibers or nanotubes dispersed in epoxy matrix, a viscous liquid facilitating the compounding stage. The interest in developing new composites aimed for biomedical applications led us to design new nanocomposites based in biodegradable polymers with demonstrated biological performance.

We report herein the development of micro-nano composites by extruding poly(butylene succinate) (PBS) microfibers with two different diameters, 200 and 500 µm, reinforced with electrospun chitosan nanofibers. Analysis of the microfibers showed high levels of alignment of the reinforcing phase and excellent distribution of the nanofibers in the composite. Its geometry facilitates the development of orthotropy, maximizing the reinforcement in the axial fiber main axis.

The biodegradable microfiber composites show an outstanding improvement of mechanical properties and of the kinetics of biodegradation, with very small fractions (0.05 and 0.1 wt.%) of electrospun chitosan nanofibers reinforcement. The high surface area-to-volume ratio of electrospun nanofibers combined with the increased water uptake capability of chitosan justify the accelerated kinetics of biodegradation of the composite as compared with the unfilled synthetic polymer.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stodolak, E., Paluszkiewicz, C., Bogun, M. and Blazewicz, M., J. Mol. Struc., 924926, 208 (2009).CrossRefGoogle Scholar
Soundararajah, Q. Y., Karunaratne, B. S. B. and Rajapakse, R. M. G., Mater. Chem. Phys. 113, 850 (2009).CrossRefGoogle Scholar
Coleman, J. N., Khan, U. and Gun’ko, Y. K., Adv. Mater. 18, 689 (2006).CrossRefGoogle Scholar
Pinho, E. D., Martins, A., Araújo, J. V., Reis, R. L. and Neves, N. M., Acta Biomater. 5, 1104 (2009).CrossRefGoogle Scholar
Liu, L.-Q., Tasis, D., Prato, M. and Wagner, H. D., Adv. Mater. 19, 1228 (2007).CrossRefGoogle Scholar
Yeo, L. Y. and Friend, J. R., J. Exp. Nanosci. 1, 177 (2006).CrossRefGoogle Scholar
Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. and Ramakrishna, S., Compos. Sci. Technol. 63, 2223 (2003).CrossRefGoogle Scholar
Venugopal, J., Vadgama, P., Kumar, T. S. S. and Ramakrishna, S., Nanotechnology 18, 511 (2007).CrossRefGoogle Scholar
Martins, A., Reis, R. L. and Neves, N. M., Int. Mater. Rev. 53, 257 (2008).CrossRefGoogle Scholar
Lin, T., Wang, H. and Wang, X.. Adv. Mater. 17, 2699 (2005).CrossRefGoogle Scholar
Martins, A., Pinho, E. D., Faria, S., Pashkuleva, I., Marques, A. P., Reis, R. L. and Neves, N. M., Small 5, 1195 (2009).Google Scholar
Correlo, V. M., Boesel, L. F., Bhattacharya, M., Mano, J. F., Neves, N. M. and Reis, R. L., Macrom. Mater. Eng. 290, 1157 (2005).CrossRefGoogle Scholar
Correlo, V. M., Pinho, E. D., Pashkuleva, I., Bhattacharya, M., Neves, N. M. and Reis, R. L., Macromol. Biosci. 7, 354 (2007).CrossRefGoogle Scholar
Costa-Pinto, A. R., Salgado, A. J., Correlo, V. M., Sol, P. C., Bhattacharya, M., Charbord, P., Reis, R. L. and Neves, N. M., Tissue Eng. Part A 14, 1049 (2008).CrossRefGoogle Scholar
Oliveira, J. T., Correlo, V. M., Sol, P. C., Costa-Pinto, A. R., Malafaya, P. B., Salgado, A. J., Bhattacharya, M., Charbord, P., Neves, N. M. and Reis, R. L., Tissue Eng. Part A 14, 1651 (2008).CrossRefGoogle Scholar
Coutinho, D. F., Pashkuleva, I., Alves, C. M., Marques, A. P., Neves, N. M. and Reis, R. L., Biomacromolecules 9,1139 (2008).CrossRefGoogle Scholar
Van Krevelen, D. W. Properties of polymers. 3 rd Ed. Amsterdam. Elsevier, 1990.Google Scholar
Neves, N. M., Isdell, G., Pouzada, A. S. and Powell, P. C., Polym. Compos. 19, 640 (1998).CrossRefGoogle Scholar
Mahfuz, H., Adnan, A., Rangari, V. K., Jeelani, S. and Jang, B. Z., Composites: Part A 35, 519 (2004).CrossRefGoogle Scholar
Krause, W., Henning, F., Tröster, S., Geiger, O. and Eyerer, P., J. Thermoplas. Compo. Mater. 16, 289 (2003).CrossRefGoogle Scholar
Correlo, V. M., Boesel, L. F., Bhattacharya, M., Mano, J. F., Neves, N. M. and Reis, R. L., Mater. Sci. Eng. A 403, 57 (2005).CrossRefGoogle Scholar
Pavlov, M. P., Mano, J. F., Neves, N. M. and Reis, R. L., Macromol. Biosci. 4, 776 (2004).CrossRefGoogle Scholar