Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T03:59:30.667Z Has data issue: false hasContentIssue false

Single Stranded dna Translocation Through a Fluctuating Nanopore

Published online by Cambridge University Press:  01 February 2011

O. Flomenbom
Affiliation:
School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
J. Klafter
Affiliation:
School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
Get access

Abstract

We investigate the translocation of a single stranded DNA (ssDNA) through a pore, which fluctuates between two conformations, by using coupled master equations (ME). The probability density function (PDF) of the first passage times (FPT) of the translocation process is calculated, displaying a triple, double or mono-peaked behavior, depending on the system parameters. An analytical expression for the mean first passage time (MFPT) of the translocation process is derived, and provides an extensive characterization of the translocation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alberts, B. et al. Molecular Biology of The Cell, Garland Publishing, Inc, NY & LONDON (1994).Google Scholar
2. Madigan, M. T., Matinko, J. M. and Parker, J., Biology of Microorganisms. Prentice-Hall, International, Inc (1997).Google Scholar
3. Song, L., et al. Science: 274, 18591866 (1996).Google Scholar
4. Kasianowicz, J. J.,, Brandin, E., Branton, D. and Deamer, D. W., Proc. Natl. Acad. Sci.: 93, 1377013773 (1996).Google Scholar
5. Meller, A., Nivon, L., and Branton, D., Phys. Rev. Lett.: 86, 34353438 (2001).Google Scholar
Meller, A., J. Phys: Cond. Matt.: 15, R581–R607, (2003).Google Scholar
6. Flomenbom, O. and Klafter, J., Phys. Rev. E‥: 68, 041910–7 (2003).Google Scholar
7. Sung, W. and Park, P. J., Phys. Rev. Lett.: 77, 783786 (1996).Google Scholar
8. Lubensky, D. K. and Nelson, D. R., Biophys. J.: 77, 18241838 (2001).Google Scholar
9. Berezhkovskii, A. M. and Gopich, I. V., Biophys. J.: 84, 787793 (2003).Google Scholar
10. Metzler, R. and Klafter, J., Biophys. J.: 85, 27762779 (2003).Google Scholar
11. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics. Clarendon press, Oxford (1986).Google Scholar
12. Deamer, D. W. and Akeson, M., Tibtech: 18 (2000).Google Scholar
13. Flomenbom, O. and Klafter, J., submitted.Google Scholar
14. Klafter, J. and Silbey, R., Phys. Rev. Lett.: 44, 5558 (1980).Google Scholar
15. Zwanzig, R., Nonequilibrium Statistical Mechanics. Oxford University Press, NY, NY (2001).Google Scholar