Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T16:51:06.001Z Has data issue: false hasContentIssue false

Single electron charging effect in individual Si nanocrystals.

Published online by Cambridge University Press:  17 March 2011

P. Gentile
Affiliation:
Département de Recherche Fondamentale, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
T. Baron*
Affiliation:
Laboratoire de Physique de la Matière, CNRS-INSA Lyon, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France
N. Magnea
Affiliation:
Département de Recherche Fondamentale, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
P. Mur
Affiliation:
Leti- CEA Technologie Avancées, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
F. Martin
Affiliation:
Leti- CEA Technologie Avancées, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
M.N. Séméria
Affiliation:
Leti- CEA Technologie Avancées, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
*
*Corresponding author : [email protected]
Get access

Abstract

We present a detailed study of the electronics properties of individual silicon nano- crystals (nc-Si) elaborated by Low Pressure Chemical Vapor Deposition on 1.2 nm thick SiO2 grown on Si (100). The combination of ultra thin oxide layers and highly doped substrates allows imaging the hemispherical dots by Scanning Tunneling Microscopy. By analyzing the STM images, we deduce a size distribution, which ranges between 3 and 6 nm with a surface density around 1012 cm-2. Spectroscopic studies of single dots are made by recording the I(V) curves on the Si nanocrystal accurately selected with the metallic tip. These I(V) curves obtain on a single dot, exhibit Coulomb blockade and resonant tunneling effects. Coulomb pseudo gaps, Ec, between 0.15 and 0.2 V are measured for different dots. From the width and height of the staircases observed at bias greater than Ec, 60 meV and 40 pA respectively, capacitance of 0.5 to 1 aF and tunnel resistance of 3.5×108 and 5.7×109 Ohms are measured within the orthodox approximation for asymmetric junctions. We have determined, from experimental measurements, the energy of the first level confined in nc-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tiwari, S., Rana, F., Chan, K., Shi, L., and Hanafi, H., Appl. Phys. Lett. 69 (9) (1996) 1232.Google Scholar
[2] Choi, B.H., Hwang, S.W., Kim, I.G., Shin, H.C., Kim, Y., Kim, K., Appl. Phys. Lett. 73 (21) (1998) 3129.Google Scholar
[3] Bentum, P.J.M. Van, Kempen, H. Van, Leemput, L.E.C. Van de, Teunisse, P.A.A., Phys. Rev. Lett. 60 (4) (1988) 369.Google Scholar
[4] Schönenberger, C., Houten, H. Van, Donkersloot, H.C., Europhys. Lett. 20 (3) (1992), 249. R. Wilkins, E. Ben-Jacob, R.C. Jaklevic, Phys. Rev. Lett. 63 (7) (1989), 801.Google Scholar
[5] Baron, T., Martin, F., Mur, P., Wyon, C., Dupuy, M., J. Of Crystal Growth 209 (2000) 1004.Google Scholar
[6] Mur, P., Séméria, M.N., Olivier, M., Papon, A.M., Leroux, Ch., Reimbold, G., Gentile, P., Magnea, N., Baron, T., Clerc, R., Ghibaudo, G., 10th Int. Conf. On Solids Films and Surfaces Princeton (2000).Google Scholar
[7] Baron, T., Martin, F., Mur, P., Wyon, C., Dupuy, M., Busseret, C., Souifi, A., Guillot, G., Appl. Surface Scienc, 164 (2000) 29.Google Scholar
[8] Averin, D.V., Likharev, K.K., Elsevier, Amsterdam 1991.Google Scholar
[9] Palun, L., PhD Thesis, Université Joseph Fourier Grenoble France (2000).Google Scholar