Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:30:51.841Z Has data issue: false hasContentIssue false

Single Crystal Growth and Thermoelectric Properties of Ce5Cu19P12

Published online by Cambridge University Press:  10 February 2011

K. J. Proctor
Affiliation:
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
F. J. DiSalvo
Affiliation:
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
Get access

Abstract

Single crystals of the known ternary cerium intermetallic Ce5Cu19P12were grown by Sn flux and I2transport methods. The long axis of the black hexagonal needles was confirmed to be the c-axis by single crystal X-ray diffraction. Electrical resistivity of both single crystals and a pressed pellet was measured from 4 - 300 K; the room temperature resistivity is about 400 μΩ-cm for the needle axis of the crystals and about 5 mΩ-cm for the pressed pellet. The thermopower of the pressed pellet was found to be 34 μV/K at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cava, R.J., Siegrist, T., Carter, S.A., Krajewski, J.J., Peck, W.F. Jr., Zandbergen, H.W., J. Solid State Chem. 121, 5155 (1996).Google Scholar
2. Chykhrij, S.I., Loukashouk, G.V., Oryshchyn, S.V., Kuz'ma, Yu. B., J. Alloys Compd. 248, 224232 (1997).CrossRefGoogle Scholar
3. Takabatake, T., Teshima, F., Fujii, H., Nishigori, S., Suzuki, T., Fujita, T., Tamaguchi, Y., Sakurai, J., Jaccard, D., Phys. Rev. B. 41 (13), 96079610 (1990).Google Scholar
4. Nakamoto, G., Takabatake, T., Bando, Y., Fujii, H., Izawa, K., Suzuki, T., Fujita, T., Minami, A., Oguro, I., Tai, L.T., Menovsky, A.A., Physica B 206&207, 840843 (1995).Google Scholar
5. Takabatake, T., Tanaka, H., Bando, T., Fujii, H., Nishigori, S., Suzuki, T., Fujita, T., Kido, G., Phys. Rev. B 50 (1), 623626 (1994).CrossRefGoogle Scholar
6. Schneider, H., Kletowski, Z., Oster, F., Wohlleben, D., Solid State Comm. 48 (12), 10931097 (1983).CrossRefGoogle Scholar
7. Mizushima, T., Isikawa, Y., Mori, K., Sakurai, J., J. Phys. Soc. Jpn. 65 Suppl B., 146150 (1996).Google Scholar
8. Kaibe, H., Tanake, Y., Sakata, M., Nishida, I., J. Phys. Chem. Solids 50 (9), 945950 (1989).Google Scholar
9. Abell, J.S., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K. A. Jr., Eyring, L. (North-Holland, Amsterdam, 1989), Vol.12, p. 1.Google Scholar
10. Fisk, Z., Remeika, J.P., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K. A. Jr., Eyring, L. (North-Holland, Amsterdam, 1989), Vol.12, p. 53.Google Scholar
11. Odile, J.P., Soled, S., Castro, C.A., Wold, A., Inorg. Chem. 17 (2), 283–6 (1978).CrossRefGoogle Scholar
12. Stewart, G.R., Fisk, Z., Willis, J.O., Phys. Rev. B: Condens. Matter 28 (1), 172–7 (1983).Google Scholar
13. Jeitschko, W., Braun, D., Acta. Cryst. B33, 34013406 (1977).Google Scholar
14. Proctor, K.J. (unpublished).Google Scholar
15. Luzhnaya, N.P., J. Cryst. Growth 3&4, 97 (1968).CrossRefGoogle Scholar
16. Perrier, Ch., Kirschen, M., Vincent, H., Gottlieb, U., Chenevier, B., Madar, R., J. Solid State Chem. 133, 473478 (1997).CrossRefGoogle Scholar
17. Gordon, R.A., Ph.D. Thesis, Cornell University, 1995.Google Scholar
18. XPOW v2.0©1993; Downs, B. and Bartelmehs, K., American Mineralogist 78, 11041107 (1993).Google Scholar
19. Proctor, K.J., Jones, C.D.W., DiSalvo, F.J., J. Phys. Chem. Solids, in press.Google Scholar
20. Jones, C.D.W., Regan, K.A., DiSalvo, F.J., Phys. Rev. B. 58 (24), in press (1998).Google Scholar
21. Badding, J. (private communication).Google Scholar