Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T20:28:59.304Z Has data issue: false hasContentIssue false

Simultaneous Detection of Radiative and Non-Radiative Recombination in Porous Silicon

Published online by Cambridge University Press:  28 February 2011

Vytautas Grivickas
Affiliation:
Vilnius University, Sauletekio 10, 2054 Vilnius, Lithuania
Jan Linnros
Affiliation:
Dept. of Solid State Electronics, Royal Institute of Technology, Electrum 229, 164 40 Kista-Stockholm, Sweden
Get access

Abstract

Radiative and non-radiative recombination in porous silicon (PSi) is measured under a wide injection range by detecting of photoluminescence (PL) and free-carrier absorption (FCA) decay. We used 2.34 eV and 140 ns light pulses for carrier excitation in PSi flakes. The excited carriers were probed by focused cw IR light and the carrier concentration was calculated by using the free-carrier absorption cross section of bulk (c-Si). The results demonstrate a scaling between the total PL yield in the S-band, integrated over wavelengths, and the free carrier concentration. At lower injections the observed free carrier and PL decay follow a similar, density-independent stretched-exponential law. At injections approaching 1018 cm−3, a fast recombination component appears reducing the lifetime by a factor of ten. This component is attributed to Auger recombination of separated e-h pairs on a set of Si subclusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Calcott, P.D., Nash, K. J., Canham, L.T., Kane, M. J. and Brumhead, D., J.Phys: Condens. Matter 5, L91 (1993); J. Luminesc. 57, 257 (1993).Google Scholar
2 Mauckner, G., Thonke, K., Baier, T., Walter, T. and Sauer, R., J. Appl. Phys. 75, 4167 (1994).Google Scholar
3 Amato, G., Sol. St. Commun. 89, 213 (1994).Google Scholar
4 Pavesi, L. and Ceschini, M., Phys. Rev. B 48, 17625 (1993).Google Scholar
5 Tessler, L.R., Alvarez, F. and Teschke, O., Appl. Phys. Lett. 62, 2381 (1993).Google Scholar
6 Vial, J.C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R. and Macfarline, R.M., Phys. Rev. B 45, 14171 (1992).Google Scholar
7 Grivickas, V. and Linnros, J.. Thin Solid Films 236, (1994) (in press).Google Scholar
8 Grivickas, V. and Basmaji, P., Thin Solid Films 235, 234 (1993).Google Scholar
9 Grivickas, V., Linnros, J., Vigelis, A., Seckus, J. and Tellefsen, J.A., Sol. St. Electron. 35, 299 (1992).Google Scholar
10 Jastrzebski, L., Lagovski, J. and Gatos, H.C., J. Electochem. Soc. 126, 260 (1979).Google Scholar
11 Peter, K., Willeke, G., Prasad, K., Shah, A. and Bucher, E., Phil. Mag. B 69, 197 (1994).Google Scholar
12 Grivickas, V. and Linnros, J. (unpublished).Google Scholar
13 Grivickas, V., Linnros, J., Bikbajevas, V. and Noreika, D. (unpublished results).Google Scholar
14 Sawada, S., Hamada, N. and Ookubo, N., Phys. Rev. B 49, 5236 (1994).Google Scholar
15 Maly, P., Trojanek, F., Hospodkova, A., Kohlova, V. and Pelant, I., Sol. St. Commun. 89, 709 (1994).Google Scholar
16 Grivickas, V., Baranauskas, V., Rodriges, C.R., Basmaji, P. and Misoguti, L., Int. J. Optoel. (1994) (in press).Google Scholar