Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:39:25.927Z Has data issue: false hasContentIssue false

Simulations of the Domain State Model

Published online by Cambridge University Press:  10 February 2011

U. Nowak
Affiliation:
Theoretische Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany
A. Misra
Affiliation:
Dept. of Physics and MINT Center, University of Alabama, Box 870209, AL 35487, USA
K. D. Usadel
Affiliation:
Theoretische Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany
Get access

Abstract

The domain state model for exchange bias consists of a ferromagnetic layer exchange coupled to an antiferromagnetic layer. In order to model a certain degree of disorder within the bulk of the antiferromagnet, the latter is diluted throughout its volume. Extensive Monte Carlo simulations of the model were performed in the past. Exchange bias is observed as a result of a domain state in the antiferromagnetic layer which develops during the initial field cooling, carrying a remanent domains state magnetization which is partly irreversible during hysteresis. A variety of typical effects associated with exchange bias like, e. g., its dependence on dilution, positive bias, temperature and time dependences as well as the dependence on the thickness of the antiferromagnetic layer can be explained within this model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Meiklejohn, W. H. and Bean, C. P., Phys. Rev. 102, 1413 (1956).Google Scholar
[2] Meiklejohn, W. H. and Bean, C. P., Phys. Rev. 105, 904 (1957).Google Scholar
[3] Nogués, J. and Schuller, I. K., J. Magn. Magn. Mat. 192, 203 (1999).Google Scholar
[4] Malozemoff, A. P., Phys. Rev. B 35, 3679 (1987).Google Scholar
[5] Malozemoff, A. P., J. Appl. Phys. 63, 3874 (1988).Google Scholar
[6] Malozemoff, A. P., Phys. Rev. b 37, 7673 (1988).Google Scholar
[7] Koon, N. C., Phys. Rev. Lett. 78, 4865 (1998).Google Scholar
[8] Mauri, D., Siegmann, H. C., Bagus, P. S., and Kay, E., J. Appl. Phys. 62, 3047 (1987).Google Scholar
[9] Schulthess, T. C. and Butler, W. H., Phys. Rev. Lett. 81, 4516 (1998).Google Scholar
[10] Schulthess, T. C. and Butler, W. H., J. Appl. Phys. 85, 5510 (1999).Google Scholar
[11] Stiles, M. D. and McMichael, R. D., Phys. Rev. B 59, 3722 (1999).Google Scholar
[12] Kiwi, M., Mejía-López, J., Portugal, R. D., and Ramirez, R., Europhys. Lett. 48, 573 (1997).Google Scholar
[13] Takáno, K., Kodama, R. H., Berkowitz, A. E., Cao, W., and Thomas, G., Phys. Rev. Lett. 79, 1130 (1997).Google Scholar
[14] Takáno, K., Kodama, R. H., Berkowitz, A. E., Cao, W., and Thomas, G., J. Appl. Phys. 83, 6888 (1998).Google Scholar
[15] Miltényi, P., Gierlings, M., Keller, J., Beschoten, B., Giintherodt, G., Nowak, U., and Usadel, K. D., Phys. Rev. Lett. 84, 4224 (2000).Google Scholar
[16] Nowak, U., Misra, A., and Usadel, K. D., J. Appl. Phys. 89, 7269 (2001).Google Scholar
[17] Nowak, U., Misra, A., and Usadel, K. D., J. Magn. Magn. Mat. 240, 243 (2002).Google Scholar
[18] Nowak, U., Usadel, K. D., Miltényi, P., Keller, J., Beschoten, B., and Giintherodt, G., Phys. Rev. B 66, 14430 (2002).Google Scholar
[19] Keller, J., Miltényi, P., Beschoten, B., Giintherodt, G., Nowak, U., and Usadel, K. D., Phys. Rev. B 66, 14431 (2002).Google Scholar
[20] Misra, A., Nowak, U., and Usadel, K. D., J. Appl. Phys. in press (2003).Google Scholar
[21] Shi, H. T., Lederman, D., and Fullerton, E. E. C., J. Appl. Phys. 91, 7763 (2002).Google Scholar
[22] Mewes, T., Lopusnik, R., Fassbender, J., Hillebrands, B., Jung, M., Engel, D., Ehresmann, A., and Schmoranzer, H., Appl. Phys. Lett. 76, 1057 (2000).Google Scholar
[23] Mougin, A., Mewes, T., Jung, M., Engel, D., Ehresmann, A., Schmoranzer, H., Fassbender, J., and Hillebrands, B., Phys. Rev. B 63, 60409 (2001).Google Scholar
[24] Nolting, F., Scholl, A., Stöhr, J., Seo, J. W., Fompeyrine, J., Siegwart, H., Locquet, J.-P., Anders, S., Liining, J., Fullerton, E. E., Toney, M. F., Scheinfein, M. R., and Padmore, H. A., Nature 405, 767 (2000).Google Scholar
[25] Ohldag, H., Scholl, A., Nolting, F., Anders, S., Hillebrecht, F. U., and Stöhr, J., Phys. Rev. Lett. 86, 2878 (2001).Google Scholar
[26] Binder, K. and Heermann, D. W., in Monte Carlo Simulation in Statistical Physics, edited by Fulde, P. (Springer-Verlag, Berlin, 1997).Google Scholar
[27] Nowak, U., in Annual Reviews of Computational Physics IX, edited by Stauffer, D. (World Scientific, Singapore, 2001), p. 105.Google Scholar
[28] Nogués, J., Leighton, C., and Schuller, I. K., Phys. Rev. 61, 1315 (2000).Google Scholar
[29] Kleemann, W., Int. J. Mod. Phys. B 7, 2469 (1993).Google Scholar
[30] Belanger, D. P., in Spin Glasses and Random Fields, edited by Young, A. P. (World Scientific, Singapore, 1998).Google Scholar
[31] Han, S.-J., Belanger, D. P., Kleemann, W., and Nowak, U., Phys. Rev. B 45, 9728 (1992).Google Scholar
[32] Nowak, U., Esser, J., and Usadel, K. D., Physica A 232, 40 (1996).Google Scholar
[33] Staats, M., Nowak, U., and Usadel, K. D., Phase Transitions 65, 159 (1998).Google Scholar
[34] Villain, J., Phys. Rev. Lett. 52, 1543 (1984).Google Scholar
[35] Poliak, P., Kleemann, W., and Belanger, D. P., Phys. Rev. B 38, 4773 (1988).Google Scholar
[36] Nowak, U. and Usadel, K. D., Phys. Rev. B 39, 2516 (1989).Google Scholar