Published online by Cambridge University Press: 21 March 2011
We present simulation results of the effect of nanoscopic and micron-sized fillers on the structure, dynamics and mechanical properties of polymer melts and blends. At the smallest length scales, we use molecular dynamics simulations to study the effect of a single nano-filler on the structure and dynamics of the surrounding melt. We find a tendency for polymer chains to be elongated and flattened near the filler surface. Additionally, the simulations show that the dynamics of the polymers can be dramatically altered by the choice of polymer-filler interactions. We use time-dependent Ginzburg-Landau simulations to model the mesoscale phase-separation of an ultra-thin blend film in the presence of an immobilized filler particle. These simulations show the influence of filler particles on the mesoscale blend structure when one component of the blend preferentially wets the filler. Finally, we present some preliminary finite element calculations used to predict the effect of mesoscale structure on macroscopic ultrathin film mechanical properties.