Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:07:28.809Z Has data issue: false hasContentIssue false

Simulations of Dislocation Dynamics in Aluminum Interconnects

Published online by Cambridge University Press:  01 February 2011

Lucia Nicola
Affiliation:
The Netherlands Institute for Metals Research/Dept. of Applied Physics, University of Groningen, Nyenborgh 4, 9747 AG Groningen, The Netherlands
Erik Van der Giessen
Affiliation:
The Netherlands Institute for Metals Research/Dept. of Applied Physics, University of Groningen, Nyenborgh 4, 9747 AG Groningen, The Netherlands
Alan Needleman
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912, USA
Get access

Abstract

A discrete dislocation simulation of plastic deformation in metallic interconnects caused by thermal stress is carried out. The calculations are carried out using a two dimensional plane strain formulation with only edge dislocations. A boundary value problem is formulated and solved for the evolution of the thermal stress field and the evolution of the dislocation structure in the cross-section of the line as cooling proceeds. For lines with a small cross section (height or width less than 1 μm), the local concentration of stresses due to dislocation patterning strongly affects the overall stress build up and relaxation. The results show a clear dependence of the transverse stress development on the line aspect ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Usell, R. Jr and Smiley, S., International Reliability Physics Symposium, 6573 (1981).Google Scholar
2. Shen, Y. L., Suresh, S., Blech, I. A., J.Appl. Phys. 80, 13881398 (1996).Google Scholar
3. Korhonen, M. A., LaFontaine, W. R., Borgesen, P., Li, C.-Y., J. Appl. Phys. 70, 67746781 (1991).Google Scholar
4. Niwa, H., Yagi, H., Tsuchikawa, H., Kato, M., J. Appl. Phys. 68, 328333 (1990).Google Scholar
5. Saerens, A. and Houtte, P. Van, J. Mater. Res. 16, 11121122 (2001).Google Scholar
6. Giessen, E. Van der and Needleman, A., Modeling Simul. Mater. Sci. Eng. 3, 689735 (1995).Google Scholar
7. Shu, J. Y., Fleck, N. A., Giessen, E. Van der, Needleman, A., J. Mech. Phys. Solids 49 13611395 (2001).Google Scholar
8. Freund, L. B., Adv. Appl. Mech. 30, 166 (1994).Google Scholar
9. Nicola, L., Giessen, E. Van der and Needleman, A., Mat. Sci. Engrg. A309-310, 274277 (2001).Google Scholar
10. Nicola, L., Giessen, E. Van der and Needleman, A. (in preparation)Google Scholar